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Airspace capacity reduction due to convective weather impedes air traffic flows and 

causes traffic congestion. This study presents an algorithm that reroutes flights in the 

presence of winds, enroute convective weather, and congested airspace based on stochastic 

dynamic programming. A stochastic disturbance model incorporates into the reroute design 

process the capacity uncertainty.  A trajectory-based airspace demand model is employed 

for calculating current and future airspace demand.  The optimal routes minimize the total 

expected traveling time, weather incursion, and induced congestion costs.  They are 

compared to weather-avoidance routes calculated using deterministic dynamic 

programming. The stochastic reroutes have smaller deviation probability than the 

deterministic counterpart when both reroutes have similar total flight distance. The 

stochastic rerouting algorithm takes into account all convective weather fields with all 

severity levels while the deterministic algorithm only accounts for convective weather 

systems exceeding a specified level of severity.  When the stochastic reroutes are compared 

to the actual flight routes, they have similar total flight time, and both have about 1% of 

travel time crossing congested enroute sectors on average.  The actual flight routes induce 

slightly less traffic congestion than the stochastic reroutes but intercept more severe 

convective weather.   

I. Introduction 

he majority of delays in the U.S. air traffic management systems are weather related.  Convective weather 

reduces airspace capacity because flights must avoid severe weather.  The reduction of airspace capacity causes 
traffic congestion when demand exceeds capacity.  The level of capacity reduction depends the hazardous weather 

severity and the pilot’s decision to fly around weather.  Weather, pilot’s decisions, and airspace demand are 

stochastic in nature.  Innovative modeling methods are needed to ensure that air traffic flows smoothly and 

efficiently under these uncertainties. One approach is to calculate optimal routes between origin and destination, 

while meeting the airspace capacity constraint.  An air traffic flow management system can then use the optimal 

routes to reroute flights around convective weather and congested airspace.  

Several rerouting algorithms1-6 that utilize weather forecast have been developed in recent years.  The studies in 

Refs.1-2 reduce the optimal routing problem to a shortest path search.  They calculate optimal routes that avoid 

hazardous weather with a severity level suggested by the Federal Aviation Administration (FAA) Aeronautical 

Information manual. The study in Ref. 3 develops an algorithm that reroutes aircraft locally around regions of the 

airspace whose capacities are exceeded. The algorithm is designed to minimize the number of piece-wise linear 
route segments needed to circumvent these areas.  To better estimate weather impact on airspace capacity, a recent 

study7 developed a quantitative model predicting when a pilot would deviate around convective weather in en route 

airspace.  By applying the quantitative convective weather avoidance model, the studies in Refs. 4-5 develop an 

automated system for rerouting aircraft around hazardous weather during the en-route segment of air traffic. The 
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flight routing algorithm in Ref. 6 is based on dynamic programming and utilizes the predicted probability that an 

aircraft will deviate around convective weather. The algorithms4-6 solve for the optimal reroutes by avoiding 

convective weather systems exceeding a pre-specified deviation probability, i.e. capacity of weather-impacted 

airspace is considered deterministic. The work in Ref. 8 models the weather process as a stationary Markov process 

without considering uncertainty in pilot decisions and solves the routing problem using stochastic dynamic 

programming.  Although the weather forecasts are used in these studies1-6, 8, none incorporate in the algorithm the 
airspace demand prediction and stochastic nature of flight deviation.     

This study develops an algorithm that reroutes flights in the presence of winds, en route convective weather, and 

congested airspace. It is based on stochastic dynamic programming and utilizes the convective weather avoidance 

model and the airspace demand prediction model. Both uncertain weather forecasts and pilots’ probabilistic 

decisions when encountering convective weather contribute to the stochastic nature of airspace capacity prediction.  

A model that captures the stochastic disturbance to aircraft motion is developed to better incorporate uncertainty in 

the airspace capacity prediction. This study employs a trajectory-based airspace demand model for tracking current 

and predicting future airspace demand. The rerouting algorithm generates flight paths that minimize the total 

expected traveling time, weather incursion, and induced congestion costs. 

Section II presents the formulations of the stochastic dynamic programming algorithm. Section III models 

convective weather as stochastic disturbances to aircraft motion. Section IV calculates cost of time for aircraft that 

travel in winds.  Section V discusses cost for aircraft crossing a congested sector.  Section VI explains setup for the 
experiments, and the results are discussed in Section VII.  Conclusions and future works are summarized in Section 

VIII.   

II. Stochastic Dynamic Programming Formulation 

 This study uses the Stochastic Dynamic Programming (SDP) method to search for the optimal flight path 

between two locations.  The dynamic equation for an aircraft between the initial position with time 

! 

x0 (t0)  and the 

final position with time 

! 

x f (t f )  is specified by the following equation,   

 

! 

x " i , j +1(t " i , j +1) = xi, j (ti, j ) + ui, j (ti, j ) +# i, j (u) , (1) 

where 

! 

i,  j,  and " i  are integer grid indices;  

! 

i  denotes an arbitrary state;  

! 

j  denotes an arbitrary stage; 

! 

" i  denotes an 

arbitrary state at the next stage; 

! 

ti, j  represents the estimated arrival time at grid 

! 

i,  j ;  

! 

xi, j (ti, j )   is the aircraft 

position; 

! 

ui, j (ti, j )  is the decision variable defined in a set of admissible controls 

! 

Ui, j ; and

! 

" i, j (u)  is the stochastic 

disturbance.  

In the finite stage SDP formulation, the minimum cost-to-go function 

! 

J (xi, j (t i, j ))  at any state is calculated 

recursively by the following equation, 

 

! 

J (xi, j (t i, j )) = min
ui, j (ti, j )

 E
" i, j (u)

{# j
[g(ui, j (t i, j ) +" i, j (u)) + J (x $ i , j +1(t $ i , j +1))]} , (2) 

where 

! 

"  is the discount factor with 

! 

0 <" # 1, and 

! 

g(•)  is the transition cost from the current state to the next state. 

The scalar 

! 

"  discounts future costs less than the same costs incurred at the present time. The transition cost in this 

study is defined as, 

 

! 

g(ui, j (t i, j ) +" i, j (u)) =
T

i, j,ti, j

# i , j +1,t # i , j+1 + C
i, j,ti, j

# i , j +1,t # i , j+1                        " i, j (u) $ %ui, j (t i, j ),

W
i, j,ti, j

# i , j +1,t # i , j+1                                                         otherwise,

& 

' 
( 

) ( 
 (3) 

where 

! 

T
i, j,ti, j

" i , j +1,t " i , j+1 is the time cost of transitioning from 

! 

xi, j (ti, j )  to 

! 

x " i , j +1(t " i , j +1) . The component 

! 

C
i, j,ti, j

" i , j +1,t " i , j+1  is the 

cost of crossing a congested region and is equal to the constant

! 

KCongestion . The component 

! 

W
i, j,ti, j

" i , j +1,t " i , j+1  is cost of the 

reroute due to the convective weather. It is equal to a user-specified constant cost 

! 

K
Weather

. After finding the 

minimum cost-to-go function 

! 

J (xi, j (t i, j ))  at all states, the optimal flight path, which is the sequence of optimal 

controls 

! 

ui, j (ti, j ), can be determined by minimizing the total cost from the origin to the destination. 
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 The computation time of the dynamic programming method is very high because the optimal solution at each 

grid point has to be computed to provide a globally optimal solution. Previous work6 that constructs the grids and 

groups them into stages shows that the optimal path is obtained in linear time. This study adapts the same procedure 

and also obtains the optimal path in linear time.  The grids for the search space and the procedures for finding the 

optimal flight path via stochastic dynamic programming algorithm are described in the Appendix.  The procedures 

are an extension of those originally proposed in Ref. 6. 

III. Disturbance Model 

This section presents the model development for the stochastic disturbance 

! 

" i, j (u)  in the aircraft equation of 

motion.  This disturbance is zero in the deterministic rerouting algorithms.  Aircraft motion is often subjected to 

unknown disturbance inputs that originate from various sources. This study considers convective weather as the only 

source of stochastic disturbances. There are two types of uncertainty present in the disturbance due to convective 

weather.  The first type is weather forecast uncertainty. Convective weather may or may not occupy a region of 

airspace in the future.  The forecasts confidence levels may quantify this uncertainty.  The second type is due to 

probabilistic nature of pilots’ decisions when they encounter convective weather. Pilots may or may not choose to 

deviate around enroute convective weather. Convective Weather Avoidance Model (CWAM) quantifies this 

uncertainty based on historical observations.  In this study, the stochastic disturbance 

! 

" i, j (u)  statistics are 

calculated using CWAM data only.  The development of the disturbance model remains the same when another type 
of disturbance uncertainty is considered.  Section III.A provides an introduction to CWAM. Section III.B presents 

the formula for calculating probability of deviation from the tentative flight path due to convective weather.  Section 

III.C models the stochastic disturbance. 

 

 
Figure 1. CWAM output for 8:00 AM EDT on June 19, 2007. 

A. Convective Weather Avoidance Model 

 CWAM is a quantitative model that integrates historical pilot decisions with Corridor Integrated Weather System 

(CIWS) weather forecasts to predict when a pilot will deviate around convective weather systems. MIT Lincoln 

Laboratory develops CIWS and CWAM. CIWS integrates data from national weather radars with thunderstorm 

forecasting technology and provides convective weather forecasts up to two hours in advance. CIWS weather 

depiction is composed of precipitation [Vertically Integrated Liquid (VIL)] and storm echo tops. CWAM calculates 

the fields identifying airspace regions pilots are likely to avoid due to convective weather. It uses CIWS VIL and 

echo top fields to predict aircraft deviations and penetrations. Each CWAM field has a probability of pilot deviation 

associated with it. Figure 1 shows CWAM weather data. The CWAM fields are outlined in different colors, which 



 

American Institute of Aeronautics and Astronautics 
 

 

4 

correspond to different deviation probabilities as labeled on the color bar.  A pilot may encounter multiple severe 

weather systems (multiple CWAM weather fields) in the en-route airspace. It is necessary to consider the overall 

possibility of deviation from the given flight plan due to multiple severe weather systems along the planned flight 

trajectory. 

B. Flight Deviation Probability for Independent Deviations   

A previous study6 develops the formula that uses all CWAM fields along the flight trajectory to calculate the 
probability of deviation from the given flight path. Assuming deviation events occur only when weather forecasts 

are updated and the events are independent, the formula is as follows: 

  

! 

P(D[t0 ,t f ]) = 1"# tk
(1" P(Dtk

)),  (4) 

where 

! 

t0,  t f  are the starting time and stopping time associated with the beginning and ending of a path; 

! 

D[t0 , t f ]  

indicates that a flight will deviate from its path between 

! 

t
0
 and 

! 

t f ;  

! 

D
t
k
 is the event that deviation occurs from the 

path at time 

! 

t
k
where 

! 

t
0
" tk " t f . 

 When the predicted aircraft position and the corresponding time are known, 

! 

P(D
t
k
)can be obtained from the 

output of CWAM. The probability 

! 

P(D
t
k
)  is zero if the aircraft does not incur any CWAM weather field between 

! 

t
k
 and t

k+1
. If the aircraft incurs a CWAM weather field between 

! 

t
k
 and t

k+1
, the probability 

! 

P(D
t
k
)  is the pilot 

deviation probability associated with the CWAM field. If the aircraft intercepts multiple CWAM weather fields 

between 

! 

t
k
 and t

k+1
, each CWAM field incursion is considered an independent event. The deviation probability 

! 

P(D
t
k
) = P(D[t

k
,t
k+1 ]
)  is calculated by Eq. (4) using a smaller time increment between 

! 

t
k
 and t

k+1
.  

C.  Flight Deviation Probability for Correlated Deviations   

 This study extends the flight deviation probability formulation by relaxing the assumption that the deviation 

events are independent.  In general, the deviation probability along a flight path, when the deviation events are 

correlated in time, is formulated as follows: 

 

  

! 

P(D[t0 ,t f ]) = P(U
tk

Dtk
)

                = 1" P(I
tk

D tk
),

 

where 

! 

D 
t
k
is the complement of 

! 

D
t
k
. Applying Bayes’ rule to obtain the following equation: 

 

  

! 

P(D[t0 ,t f ]
) = 1" P(D t f

| I
tk < t f

D tk
) #P( I

tk < t f

D tk
).  (5)    

Note that the last term in this equation is the probability of deviation at one time step before 

! 

t f .  The probability of 

deviation at each step can be computed recursively using the deviation probability in the previous step if the 

conditional probability

  

! 

P(D t f
| I

tk < t f

D tk
)  is known.  The interpretation of the conditional probability is the pilot’s 

decision on no deviation subject to past decisions.  The true correlation for pilots’ decisions over time may never be 

known.  A hypothetical assumption is made here to provide a reasonable explanation for pilots’ behavior. 
 

Assumption 1.  A Pilot does not deviate from the current CWAM weather field if in the past the pilot did not 

deviate from the weather fields with equal or larger deviation probability. 

 

Under the above assumption, the formula for the conditional probability is  
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! 

P(D t f
| I

tk < t f

D tk
) = 1" P(Dt f

| I
tk < t f

D tk
),

P(Dt f
| I

tk < t f

D tk
) =

0         if P(Dt f
) # max

tk < t f

[P(Dtk
)],

P(Dt f
)                       otherwise.

$ 

% 
& 

' & 

 (6) 

 

Similarly, 

! 

P(D
t
k
)  for 

! 

t
0
" tk " t f  can be obtained from the output of CWAM. The probability 

! 

P(D
t
k
)  is zero if 

the aircraft does not incur any CWAM weather field between 

! 

t
k
 and t

k+1
. If the aircraft incurs a CWAM weather 

field between 

! 

t
k
 and t

k+1
, the probability 

! 

P(D
t
k
)  is the pilot deviation probability associated with the CWAM field. 

If the aircraft incurs multiple CWAM weather fields between 

! 

t
k
 and t

k+1
, the deviation probability 

! 

P(D
t
k
) = P(D[t

k
,t
k+1 ]
)  is calculated by Eq. (5) using a smaller time increment between 

! 

t
k
 and t

k+1
.   

 
Figure 2. The four possible outcomes when aircraft encounter convective weathers. 

D. Model Development 

In this study, the disturbance due to the convective weather is modeled as a random variable that takes on one of 

the four values given the control command

! 

ui, j (ti, j ) = x " i , j +1(t " i , j +1) # xi, j (ti, j ) : 

 

! 

" i, j (t i, j ) =

x # i , j +1(t # i , j +1) $ xi, j (ti, j ) $ ui, j (ti, j )

x # i +1, j +1(t # i +1, j +1) $ xi, j (ti, j ) $ ui, j (ti, j )

x # i $1, j +1(t # i $1, j +1) $ xi, j (ti, j ) $ ui, j (ti, j )

$ui, j (ti, j )

=

0,

x # i +1, j +1(t # i +1, j +1) $ x # i , j +1(t # i , j +1),

x # i $1, j +1(t # i $1, j +1) $ x # i , j +1(t # i , j +1),

xi, j (ti, j ) $ x # i , j +1(t # i , j +1).

% 

& 

' 
' 

( 

' 
' 

% 

& 

' 
' 

( 

' 
' 

 (7) 

The physical implication is that aircraft can travel from the current state to the target state 

! 

x " i , j +1 when the 

disturbance is zero or in the absence of convective weather.  In the presence of convective weather, a pilot can 
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choose to deviate to the nearest two states 

! 

x " i +1, j +1,  x " i #1, j +1, or to reroute depending on the severity and location of 

convective weathers. Figure 2 shows four possible outcomes when aircraft encounter convective weather. 

The probability for each case is calculated as shown below:  

 

! 

P(ND) " P # i, j (u) = 0 ui, j (ti, j )[ ] = 1$ P(D[ti , j ,t % i , j+1 ]
) , (8) 

where 

! 

ND  is the event that the aircraft travels to the target state without deviation, and 

! 

D[ti, j ,t " i , j+1 ]
 denotes the event 

that flight path deviation occurs between 

! 

xi, j (ti, j ) and 

! 

x " i , j (t " i , j +1).  A pilot could choose to turn left, turn right or 

reroute when flight deviates from the anticipated path due to the presence of convective weather, 

i.e.

! 

P(D[ti, j ,t " i , j+1 ]
) # 0 .  Denoting 

! 

D  as the event of deviation, 

! 

A  as the event of deviation to the right, 

! 

B  as the event 

of deviation to the left and 

! 

RR  as the event of reroute, it can be shown that 

 

! 

     P(D) = 1" P(ND) = P(D[ti, j ,t # i , j+1 ])                                                  D,  ND are mutually exclusive,

     P(D) = P(D$ (A%B%RR))                                                          By definition,

& P(D$ (A%B%RR)) = P(D$A) + P(D$B) + P(D$RR)           A,  B and RR are mutually exclusive,

& P(D$A) + P(D$B) + P(D$RR) = P(D[ti , j ,t # i , j+1 ]).

   

The aircraft reroutes only when both links to the two nearest states are completely blocked by the convective 

weather, i.e., 

! 

P(D[ti, j ,t " i +1, j+1 ]) =  1 and P(D[ti, j ,t " i #1, j+1 ]) =  1 .  The reroute probability is  

 

! 

P(RR) " P # i, j (t i, j ) = xi, j (t i, j ) $ x % i , j +1(t % i , j +1) ui, j (ti, j )[ ],

P(RR) = P(D&RR) =
P(D[ti, j ,t % i , j+1 ])                                 if  P(D[ti, j ,t % i +1, j+1 ]) =  1 and P(D[ti, j ,t % i $1, j+1 ]) =  1,

0                                                                               otherwise.                                   

' 
( 
) 

 (9) 

If the pilot has no preference between turning right or turning left, and the decision depends on the severity of 

convective weathers on both sides of the original path; the probability of turning right is  

 

! 

     P(A) " P # i, j (u) = x $ i %1, j +1(t $ i %1, j +1) % x $ i , j +1(t $ i , j +1) ui, j (t i, j )[ ],
     P(A) = P(A&D) = P(A | D) 'P(D)                                                              Bayes'  rule,

     P(A | D) =
(1% P(D[ti, j ,t $ i +1, j+1 ]))

(1% P(D[ti , j ,t $ i +1, j+1 ])) + (1% P(D[ti, j ,t $ i %1, j+1 ]))
                                No preference for left or right, 

(  P(A) =
P(D[ti, j ,t $ i , j+1 ]) ' (1% P(D[ti, j ,t $ i %1, j+1 ]))

(1% P(D[ti, j ,t $ i +1, j+1 ])) + (1% P(D[ti, j ,t $ i %1, j+1 ]))
,

(10) 

and the probability of turning left is  

! 

P(B) " P # i, j (u) = x $ i +1, j +1(t $ i +1, j +1) % x $ i , j +1(t $ i , j +1) ui, j (t i, j )[ ] =
P(D[ti, j ,t $ i , j+1 ]

) & (1% P(D[ti , j ,t $ i +1, j+1 ]
))

(1% P(D[ti , j ,t $ i +1, j+1 ]
)) + (1% P(D[ti, j ,t $ i %1, j+1 ]

))
.  (11) 

The expectation is taken with respect to the disturbance when computing expected cost-to-go in Eq. (2). 

Combine Eq. (2), Eq.(3) and Eqs. (8-11) to rewrite the equation for optimal expected cost-to-go as 
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! 

J (xi, j (t i, j )) = min
ui, j (ti, j )

" j

P(ND) # T
i, j,ti, j

$ i , j +1,t $ i , j+1 + C
i, j,ti, j

$ i , j +1,t $ i , j+1 + J (x $ i , j +1(t $ i , j +1))[ ]
+P(A) # T

i, j,ti, j

$ i %1, j +1,t $ i %1, j+1 + C
i, j,ti, j

$ i %1, j +1,t $ i %1, j+1 + J (x $ i %1, j +1(t $ i %1, j +1))[ ]
+P(B) # T

i, j,ti, j

$ i +1, j +1,t $ i +1, j+1 + C
i, j,ti, j

$ i +1, j +1,t $ i +1, j+1 + J (x $ i +1, j +1(t $ i +1, j +1))[ ]
+P(RR) # W

i, j,ti , j

$ i , j +1,t $ i , j+1[ ]

& 

' 

( 
( 
( 
( 
( 
( 
( ( 

) 

* 

+ 
+ 
+ 
+ 
+ 
+ 
+ + 

. (12) 

The last term represents the cost of reroute due to convective weathers.  Next section provides the calculation of 
aircraft travel time in winds.  Section V computes the congestion cost for aircraft crossing congested regions. 

IV. Aircraft Travel Time in Wind 

This study calculates travel time for aircraft in winds based on the works in Refs. 9-10.   Section IV.A introduces 
the weather prediction system that provides current and predicted wind measurements.  Section IV.B outlines the 

calculation for aircraft travel time.  

 

 
Figure 3. A weather-avoidance route in winds from MEM to EWR calculated by SDP algorithm at 10:05 AM 

EDT on June 19, 2007. 

A. Rapid Update Cycle 

The Rapid Update Cycle (RUC) provides wind measurements to calculate aircraft travel time in wind. RUC is an 

operation weather prediction system developed by the National Oceanic & Atmosphere Administration  (NOAA) for 

users needing frequently updated short-range weather forecasts (e.g. US aviation community).  Figure 3 shows wind 

measurements from RUC on June 19, 2007.  The arrows and colors indicate wind directions and magnitudes 
respectively.  

B. Aircraft Transition Cost  

 The value of time 

! 

T
i, j,ti, j

" i , j +1,t " i , j+1 associated with transitioning between two successive states 

! 

xi, j (ti, j ) and 

! 

x " i , j +1(t " i , j +1)  is proportional to the travel time between these two states.  The value of time 

! 

T
i, j,ti, j

" i , j +1,t " i , j+1 is given by 
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! 

T
i, j,ti, j

" i , j +1,t " i , j+1 = KT # t , where 

! 

K
T

 is the cost coefficient for travel time.  Let the latitude and longitude of 

! 

xi, j  and 

! 

x " i , j +1 be 

! 

("
i
,#
i
)  and 

! 

(" f ,# f ) , respectively.  The travel time 

! 

t  is given by:  

 

! 

t =
d

Vg
 (13) 

and 

 

! 

d = Rearth " cos
#1
sin$ i "sin$ f + cos(% f #% i) " cos$ i " cos$ f[ ] , (14) 

where 

! 

d  is great circle distance, 

! 

Vg  is ground speed, and 

! 

R
earth

 is the radius of the Earth. The ground speed is 

calculated using the following equation,  

 

! 

Vg = V " cos sin#1 (
Vw

V
) "sin($w # $gc )

% 

& ' 
( 

) * 
+ 
, 
- 

. 
/ 
0 

+Vw " cos($w # $gc ) , (15) 

where 

! 

V is the magnitude of the horizontal components of the aircraft velocity (i.e. airspeed), and 

! 

V
w

 is the 

magnitude of the horizontal components of the wind velocity (i.e. wind speed).  The wind heading angle 

! 

"
w

 defines 

the direction of the horizontal component of the wind velocity.  The great circle heading angle 

! 

"gc , which is 

required for flying the great circle route in the absence of winds, is computed by the following equation 

 

! 

"gc = tan
#1 sin($ f #$ i) % cos& f

sin& f % cos& i # sin& i % cos& f % cos($ f #$ i)

' 

( 
) 
) 

* 

+ 
, 
, 
. (16) 

The travel time 

! 

t  between any two states is computed by using Eqs. (13-16). A weather-avoidance route in the 

presence of winds from MEM to EWR on June 19, 2007 is illustrated in Fig.3 as an example.  

V. Crossing a Congested Sector   

The SDP routing algorithm predicts the enroute sector demand and compares it to sector capacity (i.e. the 

number of aircraft permitted in a region of the airspace) to calculate the congestion cost for each link.  Sector 

capacity is the maximum number of aircraft that can be safely handled by a human controller. The traditional 

approach for predicting sector demand consists of propagating the current location of the aircraft forward in time 

using an aircraft performance model, flight-plan information, and Traffic Flow Management (TFM) restrictions. The 

predicted locations are then used to determine the number of aircraft in sectors at future times. Thus the traffic 

demand is based on the known TFM plans at the beginning of the prediction interval. This trajectory-based approach 
is used in the FAA Enhanced Traffic Management System (ETMS), 11 the Center TRACON Automation System 

(CTAS),12  and the Future ATM Concepts Evaluation Tool (FACET). 13 

This study uses FACET to compute current and predicted sector demand. Knowledge of estimated sector 

demand allows the selection of alternate routes that both avoid weather and keep individual sector demands below 

Monitor Alert Parameter (MAP) values.  The congestion cost at each grid 

! 

C
i, j,ti, j

" i , j +1,t " i , j+1 is determined by comparing 

current and predicted aircraft count in the enroute sectors to the MAP of each corresponding sector.  Given the flight 

altitude, each grid is mapped to its corresponding sector. Because the arrival time at each grid is already estimated, 

the congestion cost is obtained by checking the current aircraft count inside the sector or predicted demand of the 

sector at the estimated arrival time interval. The congestion cost is equal to a constant

! 

Kcongestion  if the current or 

predicted sector demand exceeds the sector capacity, zero otherwise.  

VI. Experimental Setup 

This section presents setup of the experiments evaluating the SDP routing algorithm performance. Section VI.A 

discusses the generation of the optimal weather-avoidance routes applying the SDP algorithm and compares the SDP 

routes to those generated using a deterministic DP algorithm (DDP).  Section VI.B discusses an experiment to 
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reroute weather-impacted flights in the NAS around convective weather using SDP. This study uses NASA’s Future 

ATM Concepts Evaluation Tool (FACET) to generate results. 

A. Stochastic DP Vs. Deterministic DP 

This part of the study compares weather-avoidance routes generated from the SDP algorithm to those calculated 

using DDP algorithm.6 The weather-avoidance routes are generated using actual and forecasted weather data from 

CWAM.  The DDP algorithm, which is similar to many other weather avoidance algorithms, determines the routes 
that avoid only convective weather systems (e.g. CWAM) exceeding a predefined deviation probability, whereas 

SDP calculates the optimal routes that account for all the CWAM weather cells.  In general, it is not clear which 

severity level of convective weather one should select for avoidance when designing reroutes using deterministic 

rerouting algorithm with CWAM.  

 
Figure 4. Experimental setup for evaluating SDP and DDP rerouting algorithm. 

 

One set of SDP routes and five sets of DDP routes are generated.  The sets of DDP routes avoid all CWAM 

weather cells with deviation probability exceeding 20%, 40%, 60%, 80%, and 100% deviation probability.  The 

flight distance and deviation probability for each route are measured and compared. Figure 4 summarizes the 

experimental setup. The wind magnitude is assumed to be zero when calculating SDP routes because the DDP 

algorithm6 neglects the effect of winds.  This part of study also assumes no airspace congestion. 
 

Table 1. Top 18 airports in the Central and Eastern region of the United States. 

Hartsfield-Jackson Atlanta International Airport (ATL) John F Kennedy International Airport (JFK) 

Boston Logan International Airport (BOS) LaGuardia Airport (LGA) 

Charlotte/Douglas International Airport (CLT) Orlando International Airport (MCO) 

Cincinnati/Northern Kentucky International Airport (CVG) Chicago Midway Airport (MDW) 

Dallas/Fort Worth International Airport  (DFW) Memphis International Airport (MEM) 

Detroit Metropolitan Wayne County Airport (DTW) Miami International Airport (MIA) 

Newark Liberty International Airport  (EWR) Minneapolis-St Paul International Airport (MSP) 

Washington Dulles International Airport  (IAD) Chicago O’Hare International Airport (ORD) 

George Bush Intercontinental Airport (IAH) Philadelphia International Airport (PHL) 

 

 The first test scenario includes the set of flights flying between the top 18 airports in the Central and Eastern 

region of the United States as listed in Table 1. Only flights that depart and land between 8:00 AM to 12:00 PM 

EDT on June 19, 2007 are considered. A major portion of the flights has traveling distance shorter than 900 nautical 

miles (nmi) or approximately 2 hours travel time that is within the range of CWAM forecasts.  This mitigates the 

effect of weather forecast uncertainty.  On this day, the convective weather system consists of a squall line that by 

early morning extends from the U.S.-Canadian border into Memphis Center. The line of storms moves throughout 

the day in an easterly direction and impacts the eastern shoreline by mid-afternoon.  Figure 1 shows the weather 

fields from CWAM.  
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 A 6-hour fast time simulations is conducted to calculate the flight distance, predicted, and observed deviation 

probability for each flight using SDP. Five 6-hours fast time simulations are preformed using DDP. The predicted 

deviation probability is computed by Eq. (4) using CWAM forecasts. The observed deviation probability is 

calculated using the CWAM weather fields that aircraft actually encounter in the simulation.  The SDP and DDP 

routes are calculated after the departure time. The size of the search grid is equal to 30 km. Grid arrival uncertainty 

! 

"  as defined in the Appendix is 1.2. There are 5 different DDP routes for each flight. The fuel conversion constant 

! 

d fuel  defined in Ref. 6 is 7 dollars/km. The weather cost 

! 

K
Weather

is $40,000 if any link intercepts CWAM weather 

fields that exceed the specified probability of deviation (i.e., 20%, 40%, … , 100%).  There is one SDP route for 

each flight. The cost coefficient for travel time is converted from a fuel conversion constant using airspeed and 

is

! 

KT = d fuel "V .  The weather cost 

! 

K
Weather

is set to be $40,000 if the neighboring links are completely blocked. The 

flight altitude is assumed to be constant at 35,000 feet.  The choices for the weather and congestion costs are not 

unique and treated as design parameters. Note that the weather cost and congestion cost are at least one order 

magnitude larger than the fuel cost because in general, the first priority of optimal routing is to avoid the convective 

weather without traveling through any congested sector. 

B. SDP Routing 

 This part of the study compares the original flight routes to those generated from the SDP algorithm. SDP 

routing algorithm calculates flight path for pre-departure aircraft that fly between the top 25 airports in the United 

States. These airports include Denver International Airport (DEN), Las Vegas-McCarran International Airport 

(LAS), Los Angeles International Airport (LAX), Phoenix Sky Harbor Airport (PHX), Seattle-Tacoma International 

Airport (SEA), San Francisco International Airport (SFO), Salt Lake City International Airport (SLC), and the 

airports listed in Table 1.  ETMS provides original flight plan, initial aircraft position and departure time for each 

flight. The input to the simulations is derived from the ETMS, CWAM and RUC data set for June 19. 2007. Only 

flights that depart and land between 8:00 AM to 12:00 PM EDT are considered.  Figure 5 summarizes the 

experimental setup. 

 
Figure 5. Experimental setup for comparing the SDP reroutes to the actual flight routes. 

 

These flights are rerouted around convective weather in the presence of winds and sector congestion.  The SDP 

algorithm calculates flight paths with sector demand predictions from FACET. FACET predicts aircraft count for all 

the ‘High Altitude’ sectors in 15 minutes intervals up to 2 hours ahead. FACET computes sector demand without 

aircraft that fly between the top 25 airport pairs because the SDP algorithm reroutes these flights. The SDP 
algorithm uses sector demand data to compute reroutes for congestion avoidance; it updates en-route sector demand 

using predicted aircraft positions along the new reroutes.  Sector demand data are maintained throughout the entire 

analysis; it is updated and retrieved sequentially for every reroute by the SDP algorithm. FACET re-computes sector 

demand every two hours. The performance of the SDP algorithm is evaluated for each flight by computing the travel 

time, total time flying inside congested sectors, and the probability of deviation. 

 A 6-hour fast time simulation is conducted to calculate the total travel time, total minutes in congested sectors, 

deviation probability, and most severe CWAM fields encountered for each flight. The observed deviation 

probability is computed by Eqs. (5-6).  The design parameters are the same as those defined in Section VI.A. Each 

flight is assumed to be flying at the commended cruising altitude.   
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VII. Results 

A. Stochastic DP Vs. Deterministic DP 

This section presents flight distance and deviation probability for the SDP routes and the DDP routes. There are 

a total of 774 scheduled flights that depart and land between 8:00 AM to 12:00 PM EDT on June 16, 2007 between 
the 18 selected airport pairs.   

Figure 6 shows three bar charts that record the flight distance, the predicted deviation probability, and the 

observed deviation probability for the SDP routes. The first chart is the distribution of flight distance measured in 

nautical miles among 15 bins with centers specified on the horizontal axis.  The second and third charts show the 

distribution for the predicted and observed deviation probability, respectively. Most (87%) of the flights have 

traveling distance shorter than 900 nmi or approximately 2 hours travel time that is within the range of CWAM 

forecasts.  These flights are selected to mitigate the effect of uncertainty in the weather forecasts. Over 85% of SDP 

routes have 0% predicted deviation probability, but only about 60% of flights have 0% observed deviation 

probability due to the uncertainty in weather forecasts.  Note that the SDP algorithm calculates reroutes that 

minimize expected deviation cost instead of avoiding all severe weather systems. A portion of SDP routes have non-

zero predicted probability of deviation. 
 

 
Figure 6. Flight distance, predicted and observed deviation probability for the SDP routes. 
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Figure 7. Flight distance for the SDP and DDP routes. 

 

 Figure 7 shows the distribution of flight distance for the SDP routes and the DDP routes that avoid CWAM 

weather fields exceeding 20%, 40%, 60%, 80% and 100% deviation probability. The distribution for the SDP routes 

are most similar to that of DDP routes avoiding CWAM fields with 40%+ deviation probability.  

 
Figure 8. Observed probability of deviation for the SDP and DDP routes. 

 

Figure 8 presents the distribution of the observed deviation probability for the SDP routes and the DDP routes.  

DDP routes avoiding only CWAM fields with higher deviation probability are more likely to deviate. The 20%+ 
DDP routes have the smallest observed probability of deviation whereas 100% DDP routes have the highest 

deviation probability in the group. The distribution of SDP routes is closest to that of 20%+ DDP routes but SDP 

routes have shorter traveling distance on average.  The deviation probability for a SDP route is not equal to the 

probability of rerouting.  Aircraft flying SDP routes are subjected to reroute only if the neighboring paths (links) are 

completely blocked by convective weather that have 100% deviation probability.  In general, SDP routes are better 

prepared for possible flight deviations because the neighboring paths are considered during the design process. 
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Table 2. Differences in the traveling distance, predicted, and observed deviation probability between SDP 

routes and DDP routes. 

 SDP - 

DDP 20%+ 

SDP - 

DDP 40%+ 

SDP  - 

DDP 60%+ 

SDP - 

DDP 80%+ 

SDP - 

DDP 100% 

Flight 

Distance 
(28, 74) (22, 90.6) (25, 85) (33, 88) (40, 89) 

Pred. 

Deviation 
(0.04, 0.12) (0.10, 0.17) (0.16, 0.24) (0.25, 0.34) (0.31, 0.40) 

(Mean 

Absolute 

Difference, 
Standard 

Deviation) 
Obs. 

Deviation 
(0.10, 0.19) (0.13, 0.21) (0.15, 0.24) (0.17, 0.26) (0.19, 0.27) 

 

 The SDP route is compared to the DDP routes for each individual flight.  Table 2 summarizes the distributions 

for the difference in the flight distance, predicted, and observed deviation probability between the SDP routes and 

the DDP routes.  The flight distance between SDP and DDP 40%+ routes has smallest mean absolute difference. 

They have similar total flight distance from the entire system point of view.  The large standard deviation indicates 

that each individual SDP route and its DDP counterparts are very different in design. Both the predicted and 

observed deviation probability between SDP and DDP 20%+ routes have smallest mean absolute difference. SDP 

routes have overall shorter flight distances than DDP 20%+ while achieving a similar level of deviation probability.         

B. SDP Routing 

This section presents results for SDP routes compared to original flight paths. There are a total of 1255 

scheduled flights that depart and land between 8:00 AM to 12:00 PM EDT on June 19, 2007 between the top 25 

airports. A 6-hour fast time simulation is conducted to calculate the travel time, total time inside congested enroute 
high altitude sectors, and deviation probability for each flight flying SDP routes. Another 6-hour fast time 

simulation is preformed using original flight plans.  

 
Figure 9. Traveling time for the original and SDP routes. 

 

Figure 9 shows the traveling time for the original and SDP routes.  The travel time includes wind effect.  SDP 

routes have total travel time of 2110 hours that is slightly shorter (0.9%) than the 2130 hours for original routes.  

Ninety-five percent of SDP routes have less than 15 minutes additional travel time when compared to the original 

route.  A total of 45.9 hours additional travel time is recorded when neglecting the flights that SDP routes have 

shorter travel times. 
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Figure 10. The time for aircraft inside congested sectors. 

 

Figure 10 shows the time that aircraft fly inside congested sectors. Original routes have 1362 congestion minutes 

in total while SDP routes have 1544 congestion minutes.  In general, original routes incur less congestion than the 

SDP routes. However, the congestion minutes are only 1% of the total traveling time. Both the original routes and 
the SDP routes caused little congestion. SDP routes cannot avoid congested sectors completely because aircraft 

position prediction loses accuracy over time due to the approximations made in the computations.  

 
Figure 11. The deviation probability and most severe weather encounter for the original and SDP routes. 
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The first chart of Fig. 11 presents the observed deviation probability for the original routes and SDP routes, and 

the second chart shows the most severe CWAM fields that the flights encounter enroute in the simulation.  SDP 

routes and the original routes have similar distributions. In general, the SDP routes have smaller calculated deviation 

probability than the original flights.  A smaller percent of SDP routes encounter CWAM fields that are larger than 

50% deviation probability.  Note that more than 10% of original routes encounter CWAM fields that have 90% 

probability of deviation. In this experiment, the SDP algorithm generates reroutes that intercept less severe weather 
than the original routes.   

VIII. Conclusion 

This study develops a routing algorithm that reroutes flights based on stochastic dynamic programming in 

response to winds, hazardous weather, and congested airspace. A stochastic disturbance model is developed to better 
incorporate into the reroute design process the uncertainty of airspace capacity due to the probabilistic nature of pilot 

decisions or uncertain weather forecast. The optimal routes minimize the total expected traveling time, weather 

incursion, and induced congestion costs.  They are compared to weather-avoidance routes calculated using 

deterministic dynamic programming.  The stochastic reroutes and the deterministic reroutes avoiding convective 

weather fields exceeding 40% deviation probability have similar total flight distance, and the stochastic reroutes 

have smaller deviation probability than the deterministic counterpart.  The stochastic rerouting algorithm takes into 

account all convective weather fields with all severity levels whereas the deterministic algorithm only accounts for 

convective weather systems exceeding a specified level of severity. The stochastic reroutes and the original flight 

routes have similar total flight time, and both have about 1% of travel time crossing congested en-route sectors on 

average.  The original flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept 

more severe convective weather.   

Appendix 

The following outlines procedures for finding the optimal flight path via the stochastic dynamic programming 

algorithm.  The procedures are similar to and modified from those in Ref. 6. The procedures are summarized as the 
following: 

 for each origin (or starting) and destination pair, 

 1. Define a set of grids 

! 

xi, j  for the search space.  

      for each tentative departure time (or re-routing time),  

2. Calculate 

! 

ti, j
min  and 

! 

ti, j
max  for all 

! 

ti, j  which is the estimated aircraft arrival time at 

! 

xi, j .     

       3.   Define the set of admissible controls 

! 

Ui, j .     

       for each stage (starting from the last stage),   

   for each admissible state and admissible link,  

               4.  Calculate the expected link cost by computing: 

• The probability of deviation for each possible event 
o 

! 

P(ND), 

o 

! 

P(A), 

o 

! 

P(B),  

o 

! 

P(RR).  

• The estimated cost of travelling time 

! 

T
i, j,ti, j

" i , j +1,t " i , j+1  for aircraft in winds,   

• The congestion cost 

! 

C
i, j,ti, j

" i , j +1,t " i , j+1 , 

• The rerouting cost 

! 

W
i, j,ti, j

" i , j +1,t " i , j+1  due to convective weather. 

           5.  Calculate the optimal expected cost-to-go 

! 

J (xi, j (t i, j )) .  

          end for  

         end for  

         6.  Find the optimal path by minimizing the total cost over all stages.  

  end for  

 end for 

  

1. The first step in searching for the optimal route is to apply a discretization scheme to the airspace (which 

occupies a region involving the starting position 

! 

x0 (t0)  and the destination position 

! 

x f (t f )  to obtain the 
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discrete search space. In this study, the search space is defined by Cartesian grids. The latitude and longitude 

of the origin and destination points are transformed into the Cartesian coordinates. When the size of the 

search space and the dimension of the grids are specified, the total number of admissible states and stages 

can be determined. The admissible states are evenly distributed on a rectangular plane formed by the start-

to-end vector, which points from the starting point to the destination point, and the vector perpendicular to 

it. The number of states is set to be equal on both sides of the start-to-end vector. The Cartesian coordinates 
of the states are calculated using the two directional vectors. In general, the position 

! 

xi, j  can be located by 

going along the normalized start-to-end vector for 

! 

j  steps and going along the normalized perpendicular 

vector for 

! 

i  steps. 

2. Once the grid has been created, the times of arrival 

! 

ti, j  at each state 

! 

xi, j  are estimated given the aircraft 

speeds and the initial time 

! 

t
0
. Please note that the initial time can be the tentative departure time of an 

aircraft or the time that an aircraft is subject to tactical reroute. Each arrival time is assumed to be within a 

time interval defined by 

! 

ti, j
min

 and 

! 

ti, j
max . Although 

! 

ti, j
min

 and 

! 

ti, j
max  can be estimated by finding the shortest 

path and longest path from 

! 

x
0
 to 

! 

xi, j , approximation of arrival time at each grid is made to simplify the 

calculation. 

! 

ti, j
min

 is calculated by using great circle distance from 

! 

x
0
 to 

! 

xi, j  and the aircraft speed. 

! 

ti, j
max

 is 

assumed to be bigger than and proportional to 

! 

ti, j
min . It can be represented by 

! 

" # ti, j
min . For simplicity, the 

parameter 

! 

"  is assumed to be constant in this study. Although it can be time-varying and route-specified. 

Note that only the estimated arrival times vary, while the set of the admissible positions remains unchanged, 

when the initial time is changed.  

3. Having calculated the coordinates of the states and the corresponding estimated arrival times, the next step is 

to define the set of admissible controls 

! 

Ui, j . Here, a simple rule is adopted by assuming that an aircraft can 

travel from the starting point to any state defined in the first stage. Similarly, it can go directly from any state 

in the last stage to the destination. When an aircraft reaches the boundary of the search space, it is only 

allowed to travel along the boundary (

! 

ximin , j  to ximin , j+1 or ximax , j  to ximax , j+1) or fly towards the inside of the 

search space 

! 

ximin , j  to ximin +1, j+1 or ximax , j  to ximax "1, j+1 . When an aircraft is at any intermediate state, it can 

travel to the nearest three states at the next stage 

! 

xi, j  to xi, j+1 or xi, j  to xi"1, j+1or xi, j  to xi+1, j+1 . The 

computation time to solve a DP problem is very high because the cost-to-go function at all reachable states, 

which is determined by the number of possible links between each state, must be computed to provide a 

globally optimal solution. Therefore, allowing fewer links between each state and constructing a heuristic 

search space that defines stages to guide the searching process toward the destination can reduce the 

computation time. 

4. The probability of the four possible events is computed using Eqs. (8-11) with CWAM data.  The fuel cost or 

cost of time is proportional to the total travel time for aircraft in winds and can be estimated using a user 

specified constant 

! 

K
T

. The congestion cost is equal to a constant

! 

Kcongestion  if the current or predicted sector 

demand exceeds the maximum threshold. The rerouting cost due to severe weather is also equal to a 

constant

! 

K
Weather

.  

5.  The optimal expected cost-to-go function at each admissible state is calculated backward by using Eq. (12). 

6.  The optimal flight path, which is the sequence of optimal controls 

! 

ui, j (ti, j ) , is determined by minimizing the 

total cost from the origin to the destination. Then, the flight plan is specified by a sequence of latitude and 

longitude translated from the optimal controls.  
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