

American Institute of Aeronautics and Astronautics

1

High-Speed Prediction of Air Traffic for Real-Time Decision

Support

Monish D. Tandale*, Sandy Wiraatmadja† and P. K. Menon‡

Optimal Synthesis Inc., Los Altos, CA, 94022-2777

and

Joseph L. Rios§

NASA Ames Research Center, Moffett Field, CA, 94035-1000

The ability to rapidly generate traffic predictions is expected to be central for

implementing next-generation air traffic management functionality, both on the

ground and aboard aircraft. While high-end computers can be used for this

purpose, emerging capabilities of computational hardware such as Graphics

Processing Units, together with Cloud Computing concepts can be exploited to

realize substantial acceleration of trajectory computations at a modest cost

increment. This paper discusses the development of a computational appliance for

rapid prediction of aircraft trajectories that combines efficient algorithm and

software design with emerging high performance computing architectures. The

research effort accelerates trajectory predictions through software profiling and

tuning, and implements computationally intensive functions on high performance

computing architectures such as computing clusters, multi-threaded programming

on multi-core computers and Graphics Processing Units. The fastest of these

implementations uses a Graphics Processing Unit, which can perform a system-wide

24-hour trajectory prediction for 35,000 aircraft in less than 2.5 seconds. When

compared with the baseline trajectory prediction software, the present approach

provides over two orders of magnitude speedup.

Nomenclature

ATM Air Traffic Management

ASDI Aircraft Situation Display to Industry

ACES Airspace Concepts Evaluation System

API Application Programming Interface

BADA Base of Aircraft DAta

CARPAT Computational Appliance for Rapid Prediction of Aircraft Trajectories

CARAT# Configurable Airspace Research and Analysis Tool – Scriptable

CD&R Conflict Detection & Resolution

CUBLAS CUDA Basic Linear Algebra Subprograms

* Research Scientist, 95 First Street, monish@optisyn.com, Senior Member AIAA
† Research Engineer, 95 First Street, sandy@optisyn.com
‡ President & Chief Scientist, 95 First Street, menon@optisyn.com, Fellow AIAA
§ Aerospace Engineer, Systems Modeling and Optimization Branch, Mail Stop 210-15,

Joseph.L.Rios@nasa.gov, Member AIAA

AIAA Guidance, Navigation, and Control Conference
08 - 11 August 2011, Portland, Oregon

AIAA 2011-6660

Copyright © 2011 by Optimal Synthesis Inc. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

American Institute of Aeronautics and Astronautics

2

CUDA Compute Unified Device Architecture

FDS Flight Data Set

FACET Future ATM Concepts Evaluation Tool

GPU Graphics Processing Unit

HPC High Performance Computing

ITWS Integrated Terminal Weather System

JPDO Joint Planning and Development Office

MPI Message Passing Interface

NAS National Airspace System

NCEP National Centers for Environmental Prediction

NOAA National Oceanic and Atmospheric Administration

NextGen Next Generation Air Transportation System

OpenGL Open Graphics Library

PAR Preferred Arrival Route

RAM Random Access Memory

RUC Rapid Update Cycle

RMI Remote Method Invocation

SID Standard Instrument Departure

STAR Standard Terminal Approach Route

SMs Streaming Multiprocessors

TBO Trajectory Based Operations

TFM Traffic Flow Management

TRACON Terminal Radar Approach Control

I. Introduction

n important element of the Next Generation Air Transportation System (NextGen) concept
1
 being

developed by NASA in partnership with the Joint Planning and Development Office (JPDO), is the

Trajectory-Based Operations (TBO) concept. This new concept will dramatically change the manner in

which traffic is managed in the national airspace, leading to significant increases in airspace capacity and

efficiency. Present air traffic management methodology is based on a fixed airspace structure tied to

geographic locations within the NAS, and can be termed as Fixed Airspace Operations. The Trajectory-

Based Operations is a paradigm shift from the current approach and uses four-dimensional (4-D)

trajectories as the basis for managing the air traffic management (ATM) system. In Trajectory-based

operations, all ATM decisions across all time horizons are fundamentally related to 4-D trajectories
1
.

These 4-D trajectories are the principal language for information exchange, planning, and analysis,

enabling greater use of digital communication and ground-based and airborne automation, and facilitating

coordination and collaboration between aircraft operators and air traffic management entities.

Since aircraft trajectory prediction will play a central role in the NextGen, it is important to be able to

rapidly generate these predictions, either on the ground or onboard aircraft. While high-end computers

can be used for this purpose, cluster computing architectures and emerging high performance computing

hardware such as Graphics Processing Units (GPUs)
2
 can be exploited to realize substantial acceleration

of trajectory computations at a modest cost increment. GPU implementations of computationally

demanding algorithms have demonstrated acceleration factors of up to in diverse application areas

such as Computational Fluid Dynamics (CFD), computer vision, medical imaging, oil and gas

exploration and mathematical finance
3
.

A

American Institute of Aeronautics and Astronautics

3

The Future ATM Concepts Evaluation Tool (FACET)
4
 developed by NASA, equips researchers and

service providers with a way to explore, develop and evaluate advanced air transportation concepts before

they are field-tested and eventually deployed. FACET is able to simulate a full day's dynamic National

Airspace System (NAS) operations by quickly generating and analyzing thousands of aircraft trajectories,

using flight schedules, aircraft performance profiles, airspace models, and weather data.

The research presented here investigates the development of a Computational Appliance for Rapid

Prediction of Aircraft Trajectories (CARPAT™)
5
 that combines the trajectory and airspace modeling

features of NASA‟s FACET software with cluster computing architectures
6
 and the emerging

computational power of GPUs. Additionally, a recently-developed client-server technology
7-9

 that allows

access to the FACET functionality over the Internet Protocol (IP) is employed as the interface of the

CARPAT system with the users.

The remainder of the paper is organized as follows. An overview of the concept for trajectory

prediction accelerations is provided in Section II. Section III discusses the profiling and tuning of the

FACET code that was performed to converge on efficient algorithms and subsequent lean code

implementation. The cluster implementation of FACET is presented in Section IV and the multi-threaded

FACET implementation to exploit multi-core and multi-processor computers is presented in Section V.

Section VI describes the attempt at using the GPU as a co-processor for computationally intensive

FACET functions and Section VII describes the most successful and promising implementation in which

the GPU is used as the primary processor for executing all trajectory propagation functions. Finally, the

research summary and conclusions are presented in Section VIII.

II. Conceptual Overview

A conceptual diagram illustrating the operational concept of the computational appliance is given in

Figure 1.

Figure 1. Operational Concept for the Computational Appliance

The computational appliance is configured around one or more servers running the trajectory

prediction software, with multiple GPUs providing the acceleration of repeated computations. The server

1

Client 1

Client 2

Server with

Acceleration Hardware

CARPAT

(Computational Appliance for Rapid

Prediction of Aircraft Trajectories)

Current State,

Flight Plans,

Aircraft Type

Internet

Protocol

ITWS, RUC

W
ea

th
er

American Institute of Aeronautics and Astronautics

4

incorporates fast network hardware to allow rapid access over Internet Protocol. Air traffic management

applications running on client machines can send-out the flight plans, aircraft type, and the current states

to the computational appliance. Trajectory predictions will be generated by the computational appliance

and sent out to the clients over broadband network connection. The computational appliance is configured

to periodically download weather data from sources such as Integrated Terminal Weather System

(ITWS)
10

 or Rapid Update Cycle (RUC)
11

 in an automatic manner to ensure that the trajectory predictions

take into account the ambient wind fields, thereby increasing the fidelity of the predictions.

Note that the trajectory prediction discussed in this paper is primarily intended for use in demand

prediction for solving the national level Traffic Flow Management (TFM) problem. Hence this

formulation uses kinematic motion models, together with the aircraft performance data to model the

motion of aircraft from one way point to the next, with a propagation time step of 30 seconds. Note that

the fidelity of the trajectory predictions obtained with a time step of 30 seconds is sufficient for solving

the nation-wide TFM problem. Although not discussed in this paper, a time-scale separation approach

can be used to include higher-order dynamics in the trajectory prediction methodology to enable the

computation of turn rate and altitude rate, and to enforce load factor or bank angle limits. The trajectories

obtained by propagating these higher-order dynamics can be used as the basis for tactical conflict

detection and resolution (CD&R) algorithms.

III. Software Profiling & Tuning

Dynamic performance analysis
12

 investigates the behavior of a software using information gathered as

it executes. The goal of performance analysis is to identify the parts of a program that can be optimized

for speed or memory usage. According to Amdahl's law on software optimization
12

, the performance can

at most be increased in proportion to the number of CPU cycles being used by the part of the code that is

being optimized. This allows for identification of those functions and modules that consume a significant

fraction of the total CPU execution time, which may need to be optimized.

Figure 2. FACET Performance Tuning Cycle

Figure 2 illustrates the performance tuning cycle employed during the course of this research effort.

The first step involves running the FACET software for a sample traffic simulation scenario to measure

its run-time performance. This is followed by identification of the hot spots that are defined as portions of

Validate Changes
Compare Trajectory

Results with Baseline
Code

4. Change
Program

AMD
Code Analyst

1. Measure
Performance

Time-based Profile

2. Identify
Hot Spot

3. Identify
Cause

American Institute of Aeronautics and Astronautics

5

the code that consume significant amount of run-time. AMD Code Analyst
13

 aids in the first two steps.

The third step involves an analysis of the hot spots in the source code to identify potential improvements

that can shorten the run-time. The fourth step involves the modification of the program to implement

improved code for accelerated performance. These steps can be repeated until the point of diminishing

returns is reached.

FACET was profiled using AMD Code Analyst
13

 and the hot spots in the code were analyzed to

improve run-time performance. The following modifications were made to the FACET code.

1. Optimized Descent Range: The descent distance is the downrange the aircraft will travel while

descending from the current altitude, and is only a function of the current altitude, given the

aircraft type. In the original implementation of FACET, the descent distance was being calculated

at every time step even if the altitude remained the same from the previous time step to the

current time step. This wasteful computation was eliminated by a modified implementation in

which the descent distance is calculated only if the altitude decreased from the previous time step

to the current time step, leading to reduced run time.

2. Optimized Performance Table Lookup: FACET uses the BADA database to obtain the aircraft

performance parameters that are stored in tables as function of the aircraft altitude. In the original

FACET implementation, the search for the table index always began from zero and the loop

iterated until the current flight level was found. The search was modified to begin from the table

index at the previous time step to take advantage of the continuity in aircraft altitude from one

time step to the next.

3. Optimized Climb Range: The climb distance calculation was also modified in a manner similar to

the descent distance calculation.

4. Efficient implementation of the Add Landed Linked List: FACET maintains a linked list of all

aircraft that landed in the simulation. In the original FACET implementation, a new element was

being added to the tail of the linked list that required a complete iteration over the entire list to

find the tail. The modified implementation added the new element to the head of the list, thus

decreasing the run time from 47.34 seconds to 0.01 seconds for this code segment.

Figure 3 illustrate the results of software profiling and tuning of FACET code. These results show that

software profiling and tuning resulted in speedup of over baseline FACET code.

a.) Run-Times for a 24 Hour FACET Run

b.) Acceleration Factor Over Original FACET Code

Figure 3. Results of FACET Profiling and Software Tuning

IV. Cluster Implementation

Cluster computing techniques can provide an acceleration of trajectory computations by distributing

the computational load between multiple processors connected over a high-speed network. The software

must be re-written to take advantage of the cluster, and specifically have multiple non-dependent parallel

computations involved in its execution. Trajectory propagation of aircraft is an inherently parallel task.

R
u

n
-T

im
e

s
(s

ec
o

n
d

s)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Original
FACET

Optimized
Descent
Range

Optimized
Perf Table

Lookup

Optimized
Climb Range

Efficient Add
Landed

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Original
FACET

Optimized
Descent
Range

Optimized
Perf Table

Lookup

Optimized
Climb Range

Efficient Add
Landed

A
cc

el
er

at
io

n
 F

ac
to

r

American Institute of Aeronautics and Astronautics

6

Hence propagation of „n‟ aircraft trajectories on „m‟ cluster nodes can be parallelized by distributing

„n/m‟ aircraft on each node.

Compute clusters are commonly programmed using Message Passing Interface (MPI
14

). The most

widely used implementations of the MPI are available as C libraries. However, FACET is a mixed C-Java

application with a C computational core and a Java interface, which is not amenable to MPI

implementation. Hence, an alternate cluster architecture is proposed which uses Java Remote Method

Invocation (RMI) instead of MPI. Java Remote Method Invocation
15

 enables the programmer to create

distributed Java-based applications, in which the methods of remote Java objects can be invoked from

other Java Virtual Machines (JVMs) possibly on different hosts. A software package called CARAT#

(Configurable Airspace Research and Analysis Tool – Scriptable) was developed under a recent research

effort
7,8

 that uses RMI to allow remote clients to access FACET functions running on different host

computers.

Figure 4 illustrates the cluster computing architecture using CARAT#.

Figure 4. FACET Cluster Implementation using Java Remote Method Invocation (RMI)

Remote clients can invoke functions such as starting a simulation, querying the states of the aircraft,

setting the states of an aircraft, and other functions on the master node though RMI. The master node has

an aircraft scheduler that dynamically assigns aircraft to each slave node for propagation. The master

node also maintains a list of all aircraft and the corresponding slave node that they are assigned to. So

American Institute of Aeronautics and Astronautics

7

when the remote user queries data for a particular aircraft, the master node just invokes the method on the

appropriate slave node and returns the requested data to the user. Since the aircraft are divided and

propagated on distributed memory processors, aircraft assigned to a slave node are essentially propagated

independent of aircraft assigned to any other node. So any functions that involve interactions between

trajectories, such as conflict detection and resolution, can be run on the master node.

The least observed run time for a 24 hour FACET simulation is 110 seconds with a cluster

configuration of 3 slave nodes each running 4 independent CARAT# servers. Note that out of the 110

seconds, 32 seconds account for the data transfer time between the master and slave nodes. Thus, the

experimental results show that the data transfer times are significant components of the total runtime. This

is because some of the machines in the cluster have 100Mbps network cards which slow down the data

transfer. With the emerging 10 Gigabit Ethernet standards, the data transfer times are expected to

decrease significantly.

The total speedup that was achieved by the cluster implementation over baseline FACET, (including

the effects due to software tuning) is .

V. Multi-Threaded Implementation

Currently available multi-core systems run different threads and processes simultaneously on different

cores. A system with N cores is optimally effective when it is presented with or more concurrent

threads. A multi-threaded FACET program can take advantage of the dual cores or quad cores that may

be present on the host processor. The key to this implementation is to find functions in FACET that are

independent of each other and can be implemented in parallel. During the propagation for a single time-

step, the propagation of an aircraft is independent of other aircraft in the airspace, and hence can be

executed concurrently in different threads. Any interaction between aircraft can be coded in a separate

function and executed after the state propagation of all aircraft at a given time step is complete.

In the original FACET implementation, there exists a loop that runs over the linked list for all aircraft

and propagates each aircraft by one time step. The modified implementation divided the aircraft list into

 sub-lists for a -core processor and the propagation loop was executed over each sub-list concurrently

in separate threads, which ran on separate cores. The multi-threading was implemented using the

pthread library
16, 17

.

The execution times for a 24 hour simulation using the original single threaded FACET

implementation are as follows:

1. Total Execution Time (T): 456 seconds

2. Propagation loop over all aircraft in the aircraft linked list (P): 277 seconds. This is the

parallelizable component of the total code.

Thus the time () taken for serial code execution is T-P = 456 - 277 = 178 seconds. Note that these

execution times were recorded during at an intermediate stage of software profiling and tuning, and all

software changes to FACET were not yet implemented.

Using Amdhal‟s law the best possible performance acceleration using „ ‟ concurrent threads can be

given by

 (1)

The theoretical maximum possible acceleration by parallelization on a quad-core computer is .

Due to practical considerations such as the overhead of starting and terminating threads, and thread

contention for shared hardware resources such as the system memory, the acceleration achieved in

practice was only . Note that this acceleration factor is only due to multi threading and does not

include the cumulative effect of software profiling and tuning. The cumulative effect of software profiling

and tuning, clustering and multi-threading can yield a total speedup of .

American Institute of Aeronautics and Astronautics

8

VI. Implementation with GPU as a Co-processor

The highly parallel Graphics Processing Unit (GPU) is rapidly gaining maturity as a powerful engine

for computationally demanding applications. Over the past few years, there has been a marked increase in

the performance and capabilities of the GPU. It has evolved from a fixed-function processor built around

the graphics pipeline into a full-fledged parallel programmable processor. The GPU‟s rapid increase in

both programmability and capability has spawned a research community that has successfully mapped a

broad range of complex, computationally-demanding problems to the GPU.

The present research planned to exploit the emerging computational power of GPUs to accelerate

compute-intensive portions of the FACET code. As shown in Figure 5, the main FACET code would run

on the host processor and the data-parallel, compute-intensive functions of the FACET code would be

executed on the GPU coprocessor.

Figure 5. Using GPU as a Co-processor

Figure 6. Illustration of the Ray Casting

Algorithm

First, the profiling procedure described in Section III was used to identify “hot spots” or time-

consuming functions. Among the top few functions was the sim_inBoundary function that calculates

whether a point is inside a polygon using the Ray Casting Algorithm
18

. In this algorithm, a ray is

projected from the point under consideration and the number of intersections of the ray with the edges of

the polygon is determined. If the number of intersections is even, then the point is outside the polygon.

Conversely, the point is inside for odd number of intersections. This algorithm is parallelizable as the

intersection of the ray with every polygon edge can be performed independently. Hence, this algorithm

was implemented on the GPU. However, since the number of edges in one polygon is less than one

hundred, the time taken for transferring the polygon data from the host to the GPU was significantly

larger than the time saved by parallel implementation of the ray casting algorithm on the GPU. Thus the

memory access latency cannot be hidden by the parallel computation. Consequently, the GPU was found

to take much longer to evaluate the sim_inBoundary function. A 24-hour NAS simulation took

almost 26 minutes with sim_inBoundary implemented on the GPU. This was slower than

FACET with sim_inBoundary evaluated on the CPU, at that stage of FACET development.

The conclusion from this exercise is that the function implemented on the GPU must be a

parallelizable function with significant run time for a single call and must involve minimum amount of

data transfer between the host and the GPU. The most obvious parallelizable function that consumes

significant run time is the propagation of every aircraft in the simulation for one time step. The function is

parallelizable as the propagation of every aircraft is independent of the other, for a single time step. Any

American Institute of Aeronautics and Astronautics

9

function that involves aircraft interaction such as conflict detection and resolution can be run after every

trajectory propagation step.

The obvious next step is to implement the propagation of all aircraft in FACET for a single time step,

in parallel on the GPU. However, FACET is a mixed C and Java application and cannot be readily

adapted for implementation on the GPU in its original form. Moreover, FACET runs many other analysis

functions that are not central to trajectory propagation. Hence, to facilitate trajectory propagation on the

GPU, the core trajectory propagation functions in FACET were re-coded completely in the C language, to

create a C Trajectory Predictor (TP) application. Further details on the TP software are described in the

following section.

VII. Implementation with GPU as the Primary Processor

This section discusses the implementation in which the GPU was used a primary processor,

performing all the trajectory prediction functions, rather than as a co-processor used to accelerate only a

small chunk of computationally intensive functions.

A. Trajectory Predictor (TP)

As mentioned earlier, the core trajectory propagation functions in FACET were recoded exclusively in

C, to create a C application named Trajectory Predictor. The features of the Trajectory Predictor are:

1. TP can accept flight data input required for the simulation in both the ACES Flight Data Set File

(FDS) and the FACET Tracks File (TRX) formats. TP parses flight plans published in standard

format defined by FAA.

2. TP incorporates the BADA (Base of Aircraft Data) Database for obtaining the aircraft type

specific performance parameters such as preferred climb/descent rates, preferred cruise velocities,

altitude ceilings, etc. Note that BADA covers 294 Aircraft Types which covers 80% of Air

Traffic in the NAS.

3. TP incorporates NAS data such as airports, named waypoints, airways, Preferred Arrival Route

(PAR), Standard Instrument Departure (SID), Standard Terminal Approach Route (STAR) and

sector boundary data.

4. TP uses a 3-D hash map to rapidly identify the current sector for every aircraft at every time step

in the simulation.

5. TP returns the following flight trajectory data at every 30 second interval: time since the start of

simulation, flight mode (0 – preflight, 1-climb, 2-cruise, 3-descent, 4-landed), latitude, longitude

(degrees), altitude, true air speed, altitude rate, heading angle, flight path angle and sector index.

Note that the size of the entire trajectory data for ~35,000 flights in a 24 hr NAS simulation can

be as large as 500 MB.

6. The effect of the wind field is incorporated in the trajectory prediction. TP uses the wind field

data from RUC weather forecast (13 km grid) published by NOAA/NCEP.

1. Trajectory Prediction Equations

As in other trajectory prediction software, the TP employs the Euler's integration method, with the

following equations
4
 to propagate a flight:

Calculation of great-circle heading between current point and the next target waypoint of the flight

plan:

 (2)

Latitude Propagation:

 (3)

American Institute of Aeronautics and Astronautics

10

Longitude Propagation:

 (4)

Altitude Propagation:

 (5)

Here, is the great-circle heading between current point and the next target waypoint

 of the flight plan and are the latitude-longitude-altitude coordinates of aircraft at the

current time step.
 is the ground speed derived from the preferred true airspeed at the flight altitude for

specific aircraft type derived from the BADA tables and the RUC (Rapid Update Cycle) wind speed data

resolved along the flight path. denotes radius of the Earth and is the preferred climb/descent rate

for the specific aircraft type obtained from the BADA data. Note that the propagation time step chosen

for the trajectory prediction is 30 seconds.

2. Multi-Threaded Version of Trajectory Predictor

Much like the multi-threaded version of FACET described in Section V, a multi-threaded version of

TP was also developed. This code automatically detects the number of cores on the computer. The aircraft

list is then split into multiple lists and each aircraft list runs in parallel on different cores. Table 1 displays

the run times for a 24-hour, 35,000 flight NAS simulation for the multi-threaded TP implementation

executed on a quad core computer. The speedup achieved by multi-threaded TP is .

Table 1. Run Times for a 24-Hour NAS Simulation for Multi-Threaded Trajectory Predictor Implementation

Num

Threads
Propagation Time (s)

Acceleration

Factor

1 66.31 1

2 37.57 1.76

3 29.82 2.22

4 24.76 2.68

3. Comparison between CARPAT Trajectory Predictor Output with FACET and ACES Trajectory

Outputs

This section compares the trajectory output generated by the CARPAT Trajectory Predictor with the

trajectories generated by FACET and ACES. The primary objective is to demonstrate that the significant

speedup of the trajectory propagation in TP is achieved without a loss of fidelity.

Figure 7 shows the comparison between the time histories of latitude, longitude and altitude for

trajectories generated by FACET and TP. It may be observed that the trajectories match closely.

Figure 8 shows that the time histories of latitude, longitude and altitude as predicted by TP are offset

in time with the time histories generated by ACES. This is because ACES does not use aircraft preferred

unimpeded climb schedules below 10,000 ft, but uses empirical TRACON models to calculate TRACON

transit time. ACES uses aircraft preferred climb and descent schedules above 10,000 ft. Figure 9 shows

that the climb trajectories predicted by Trajectory Predictor and ACES match closely above 10,000 feet.

Figure 10 shows that the climb scheduled executed by both Trajectory Predictor and ACES match closely

with the BADA climb schedule above 10,000 feet.

The excellent match between the trajectories generated by Trajectory Predictor, FACET and ACES

demonstrate that that the fidelity of the trajectory predictions has not been compromised in order to

achieve the speedup on the GPU.

American Institute of Aeronautics and Astronautics

11

Figure 7. Trajectory Comparison with FACET

Figure 8. Trajectory Comparison with ACES

Figure 9. Climb Trajectory Comparison with ACES:

Above 10,000 ft

Figure 10. Comparison of Climb Schedules between

TP and ACES

B. GPU Implementation

After the development of Trajectory Predictor code in C was completed, this code was ported to run

on the GPU using CUDA. This section describes the porting of the C code to the GPU in detail.

1. Compute Unified Device Architecture (CUDA)

Until very recently, the only means available for accessing the power of the GPU was by formulating

the compute problem as an equivalent graphics rendering problem, and then coding it in OpenGL. This

involves a fairly complex mapping process. In addition to OpenGL syntax, expertise in graphics

rendering techniques is essential to establish the correspondence between the graphics rendering

processes and the kernel of the problem being solved. Since this involves extensive code rewrite, the

process is extremely error prone.

Recently, NVIDIA released Compute Unified Device Architecture (CUDA)
19

 which is a set of

software tools for issuing and managing computations on the GPU as a data-parallel computing device

without the need of mapping them to a graphics API. The CUDA software stack is composed of several

layers: a hardware driver, an application programming interface (API) and its runtime, and two higher-

level mathematical libraries for Fast Fourier Transforms and Basic Linear Algebra Subprograms (CUFFT

and CUBLAS, respectively). The hardware has been designed to support lightweight driver and runtime

layers, resulting in high performance. The CUDA API comprises an extension to the C programming

language, and has a shallow learning curve. The CUDA toolkit also includes the „nvcc
20

‟ (NVIDIA C

compiler), which can compile targets for both host CPU and GPU code. CUDA also has a hardware

thread manager that can automatically handle threading, without requiring a programmer to explicitly

write threaded code. CUDA has three key abstractions that provide parallelism:

American Institute of Aeronautics and Astronautics

12

1. A block of threads that can execute the parallel parts of the applications as kernels - functions that

are called from the host that run simultaneously on the device.

2. On-chip shared memories that can be accessed by all threads within a block, thus providing faster

data read/write.

3. Barrier synchronization that will block all threads from running until all previous CUDA calls

have been completed.

CUDA code also imposes the following restrictions:

1. Dynamic memory allocation inside a structure is not allowed.

2. Host functions (executing on the CPU) cannot be called from the device functions (executing on

the GPU).

3. Recursive functions are not allowed.

4. Linked lists cannot be used. The data access in linked lists is performed sequentially and they are

not suited for parallel access needed in a parallel implementation on the GPU.

5. Only integer and single-precision floating-point numbers are supported. Note that Tesla and new

Fermi architecture supports double precision float.

Note that due to the presence of the above factors in FACET C code, especially the heavy use of

linked lists, the FACET C code required substantial modification for GPU implementation. Hence, the

trajectory propagation code of FACET was completely recoded to create Trajectory Predictor.

2. GPU Hardware

All the numerical computations reported in this paper were generated on a desktop computer with

NVIDA Tesla C 1060
21

 high-performance graphics card (See Figure 11). All timing results for GPU

implementation given in this paper were obtained by executing the TP CUDA code on this workstation.

 Figure 11. Desktop WorkStation with Tesla C 1060 High Performance Computing Graphics Card used in

the Present Research

3. Features of CUDA Implementation of Trajectory Prediction
22

1. Trajectory data streaming from GPU to host memory: As mentioned elsewhere in this paper, a

large amount of data (~500 MB for 35,000 aircraft in a 24 hr NAS simulation) must be

transferred from the GPU to the host memory. The CUDA implementation takes advantage of

data streaming to enable concurrent trajectory propagation and the transfer of data sets, and thus

achieves overall application speedup. To perform data streaming, the aircraft list is divided into

two sub-lists. When the propagation of sub-list 1 is in progress, the trajectory data for aircraft in

sub-list 2 is streamed back to the host, and vice versa. Data streaming is made possible by the

asynchronous memory transfer capabilities of the CUDA implementation. Asynchronous memory

American Institute of Aeronautics and Astronautics

13

transfer enables a non-blocking transfer, where control is returned back to the host immediately

and the kernel can be executed simultaneously. Asynchronous memory transfer is performed as

DMA (Direct Memory Access) without host CPU involvement and hence has higher bandwidth.

DMA requires that the host memory has to reside in page-locked memory (physical address

cannot be changed by the operating system), so the amount of host memory in the trajectory

buffer must be kept low.

2. Memory coalescing: In the original C implementation of TP, the aircraft data is stored in an array

of structures, where each aircraft structure stores the various data elements for a single aircraft. In

this case, data for a single aircraft field, aircraft altitude for example, do not reside contiguously

in memory. If the data fields for various aircraft reside continuously in memory such that the

 thread access the element in the data array, the memory accesses for multiple threads can

be coalesced into a single access thus making the memory access faster. The memory coalescing

implications of the aircraft data choices are illustrated in Figure 12. To facilitate coalescing,

individual arrays for each aircraft data field were created in the modified implementation.

Figure 12. Memory Coalescing Implications of Aircraft Data Structure Choices

3. Minimizing branching in TP code: The NVIDIA GPUs are built on a scalable array of

multithreaded Streaming Multiprocessors (SMs). To manage hundreds of threads running several

different programs, the multiprocessor employs a new architecture called SIMT (Single

Instruction Multiple Thread). The multiprocessor SIMT unit creates, manages, schedules and

executes threads in groups of 32 parallel threads called warps. A warp executes one common

instruction at a time, so full efficiency is realized when all 32 threads of a warp agree on their

execution path. If the threads of a warp diverge via a data dependent conditional branch, the

warp serially executes each branch path taken. Thus, data dependent branching in the code

increases the proportion of serial computations and the run times increase. While porting the TP

code to the GPU, special attention was given to reducing or completely eliminating the if-else

statements and while loops whenever possible.

Apart from the above considerations, various design parameters such as number of threads per block

and number of registers allocated per thread, etc. were tweaked to achieve optimum performance.

4. GPU Implementation Results

The results of the GPU implementation are summarized in Table 2.

Table 2. GPU Acceleration Results

 Run

Time

(s)

Speed Up

w.r.t

FACET

w.r.t

CPU

w.r.t Multi-

Threaded

FACET 586.86

Trajectory Predictor on CPU 46.56 12.60

 Trajectory Predictor on CPU (Multi-Threaded) 24.54 23.91 1.90

Trajectory Predictor on GPU 2.42 242.50 19.24 10.14

American Institute of Aeronautics and Astronautics

14

Note that the run time for a 24 hour simulation of the NAS using the original baseline FACET

implementation was seconds. An identical simulation generating the trajectory prediction data can

be executed by the CARPAT Trajectory Predictor in seconds giving an acceleration factor of

 . When compared with the optimized, non-threaded Trajectory Predictor C code running on a

CPU, the GPU gives faster performance. Even when the multi-threading opportunities offered by

quad-core CPUs are considered, the GPU still provides faster performance.

VIII. Summary and Concluding Remarks

The objective of the research presented in this paper was to develop the prototype for a computational

appliance for rapid prediction of aircraft trajectories that leverages recent developments in High

Performance Computing technologies. The development strategy was to develop efficient algorithms for

fast trajectory propagation and implement the lean, optimized code on emerging high performance

computing architectures. The following HPC technologies were explored:

1. Cluster Computing

2. Multi-Threading for Multi-Processor/Multi Core CPUs

3. General Purpose Computing using Graphics Processing Units

The most successful and promising implementation turned out to be the Trajectory Predictor on the

GPU, which can perform a 24 hour trajectory prediction of 35,000 aircraft the in the NAS in less than 2.5

seconds.

The results of the present research are summarized in the following.

1. FACET was profiled using the AMD Code Analyst and the hot-spots in the code were analyzed

to improve run-time performance. The modifications to FACET code resulted in an acceleration

of over original FACET.

2. A Linux cluster with commodity microprocessors connected over the Ethernet protocol was set

up. A cluster implementation of FACET was developed using Java RMI, to run on this cluster.

The resultant acceleration was over the baseline FACET.

3. A multi-threaded FACET implementation was developed using the pthreads library to

accelerate performance on multi-processor/multi-core processors. The speedup of was

achieved over the original FACET implementation.

4. Trajectory Predictor code was developed exclusively in C, modeled after the core trajectory

prediction functions in FACET. Trajectory Predictor was implemented in CUDA for execution on

an NVIDIA Tesla C1060 High Performance Graphics Processing Unit. CUDA implementation of

the trajectory predictor code was able to perform a 24 hour simulation of the National Airspace

System in less than 2.5 seconds which is faster than a 24 hour simulation in the baseline

FACET software.

5. The trajectory predictions generated by CARPAT trajectory predictor were validated by

comparisons with trajectories generated from FACET and ACES.

Acknowledgments

This research was supported under NASA Ames Research Center Contracts NNX07CA13P,

NNX08CA02C, and NNA10DC12C. We are grateful to Dr. Shon Grabbe and other research scientists at

NASA Ames for their encouragement and support of the present work.

References
1“Concept of Operations for the Next Generation Air Transportation System”, Joint Planning and Development Office,

Version 0.2, July 2006.
2GPU: http://en.wikipedia.org/wiki/Gpu
3 CUDA Community Showcase: http://www.nvidia.com/object/cuda_apps_flash_new.html#

http://en.wikipedia.org/wiki/Gpu

American Institute of Aeronautics and Astronautics

15

4Bilimoria, K. D., Sridhar, B., Chatterji, G. B., Sheth, G., and Grabbe, S., “FACET: Future ATM Concepts Evaluation Tool,”

3rd USA/Europe Air Traffic Management R&D Seminar, Naples, Italy, June 2000.
5 Tandale, M. D., Menon, P. K., “Rapid Prediction of Air Traffic for Trajectory Based Operations,” 8th Aviation Technology,

Integration and Operations Conference, Anchorage AK, 14-19 September, 2008.
6Computer Cluster: http://en.wikipedia.org/wiki/Computer_cluster
7Menon, P. K., Diaz, G. M., Tandale, M. D., and Kwan, J., “CARAT# - A Rapid Prototyping Software for Developing Next-

Generation Air Traffic Management Algorithms,” Final Report Prepared under NASA Contract No. NNA05BE64C, Vol. I,

Optimal Synthesis Inc, Palo Alto, CA, November 21, 2006.
8Menon, P. K., Diaz, G. M., Vaddi, S. S., and Grabbe, S. R., “A Rapid Prototyping Environment for En Route Air Traffic

Management Research”, AIAA Guidance, Navigation and Control Conference, August 15-18 2005, San Francisco, CA.
9Menon P. K., Cheng V. H. L., Kwan J. S., Lin V., Peng W., W. Krueger W., Manikonda V., “Open-Source Based Software

Systems for Linking Disparate Software Components,” Final report prepared under NASA NRA Contract No.

NNL08AA12B/NNL08AB71T, Aug 2009.
10Integrated Terminal Weather System: /http://www.raytheon.com/capabilities/products/itws/
11RUC Main Website: http://ruc.noaa.gov/
12Wikipedia Article on Software Profiling: http://en.wikipedia.org/wiki/Profiling_%28computer_programming%29
13AMD CodeAnalyst Performance Analyzer for Windows and Linux programs on AMD processors:

http://developer.amd.com/cawin.jsp http://developer.amd.com/calinux.jsp
14Message Passing Interface (MPI) http://www-unix.mcs.anl.gov/mpi/
15JAVA Remote Method Invocation (RMI): http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
16Wikipedia article on POSIX threads: http://en.wikipedia.org/wiki/POSIX_Threads
17POSIX Threads Programming tutorial at the Lawrence Livermore National Laboratory website:

https://computing.llnl.gov/tutorials/pthreads/
18Wikipedia article on the Ray Casting Algorithm: http://en.wikipedia.org/wiki/Point_in_polygon
19NVIDIA: CUDA http://www.NVIDIA.com/object/cuda_home.html#
20The CUDA Compiler Driver NVCC: http://moss.csc.ncsu.edu/~mueller/cluster/NVIDIA/2.0/nvcc_2.0.pdf
21NVIDIA Tesla C1060 High Performance Computing Graphics Card:

http://www.NVIDIA.com/object/product_tesla_c1060_us.html
22NVIDIA CUDA Programming Guide 2.0:

http://developer.download.NVIDIA.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

http://en.wikipedia.org/wiki/Computer_cluster
http://www.raytheon.com/capabilities/products/itws/
http://ruc.noaa.gov/
http://en.wikipedia.org/wiki/Profiling_%28computer_programming%29
http://developer.amd.com/cawin.jsp
http://developer.amd.com/calinux.jsp
http://www-unix.mcs.anl.gov/mpi/
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://en.wikipedia.org/wiki/Point_in_polygon
http://www.nvidia.com/object/cuda_home.html
http://moss.csc.ncsu.edu/~mueller/cluster/nvidia/2.0/nvcc_2.0.pdf
http://www.nvidia.com/object/product_tesla_c1060_us.html
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

