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Design and Evaluation Of a Stochastic Time-Based
Arrival Scheduling Simulation System

Daniel Mul nger and Alexander Sadovsky

This paper describes an expansion of modeling capabilities for the Stochastic Terminal
Arrival Scheduling Software (STASS), a fast-time simulation system originally created to
study terminal area arrival scheduling concepts. This expansion of STASS includes a more
general model of scheduling, a massively parallel computational engine, and a data storage
system suitable for large trade studies. A description and evaluation of these new capabil-
ities in modeling, data storage, and data processing is facilitated by two case studies. The

rst of these case studies, conducted for the Atlanta, Dallas/Ft. Worth, and Los Angeles
airports, focuses on fractional airport throughput and meter- Xx-to-runway ratio and shows
a correlation between these two quantities. The second case study, conducted for the Los
Angeles airport, focuses on the potential scheduling bene ts of reduced arrival time uncer-
tainty and shows, in particular, that a reduction in runway arrival time uncertainty from
15 seconds to 12 seconds results in a 4.5% increase in airport arrival throughput.

Nomenclature

FH Freeze horizon

MF Meter X

RWY Runway

TT Transit time

STA Scheduled time of arrival

ETA Estimated time of arrival

FH ETA Estimated time of arrival at the freeze horizon
TRACON Terminal Radar Approach Control
MTD Maximal TRACON delay

MTTR Maximal TRACON time recovery
ATA Actual time of arrival

FCFS First-come rst-serve

I. Introduction

Growing air tra ¢ demand presents researchers with the challenge of increasing the capacity of current
air tra ¢ management systems. This challenge is most pronounced in the terminal area, where multiple
tra ¢ ows converge within a con ned region. A failure to manage these merges e ectively can start a
causal chain wherein an accumulating bottleneck e ect leads to ight delays, unused runway capacity, and
increased controller workload which, in turn, leads to increased nancial and environmental costs. Because
of the complexity of optimization problems that describe the aforementioned impacts, fast-time statistical
analysis of large air tra c¢ data samples is a critical asset for rapidly researching heuristics and strategies for
tra ¢ management.

Results in this study are based on fast-time Monte-Carlo simulations, conducted using an expanded ver-
sion of the air tra ¢ scheduling research software called the Stochastic Terminal Area Scheduling Simulation
(STASS). The modi cations were needed as the previous version of STASS did not have the data storage
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infrastructure required for large scale analysis and lacked a number of scheduling capabilities needed to
model future operations more realistically. STASS was based on simulation techniques used to investigate
terminal arrival concepts.{3 Later studies analyzed the bene ts of airline-in uenced priority scheduling.*{6
The original version of STASS has been used to show that the utilization of decision support tools and
Advanced Airspace Concepts (AAC)’ can increase airport capacity. This expanded version of STASS was
used to explore design issues for a future scheduler.®

This paper presents the computational and analytical capabilities gained from expanding STASS. These
capabilities are a massively parallel computational engine and a data storage system suitable for large
trade studies; a detailed description is given in section STASS Architecture (Expanded Version). Two case
studies demonstrating these capabilities are presented in the section Two Case Studies Using Expanded
STASS. The rst of these case studies, conducted for the Atlanta, Dallas/Ft. Worth, and Los Angeles
airports, focuses on fractional airport throughput and meter- x-to-runway ratio. This study investigates the
hypothesis that airport capacity is limited by the number of meter xes available per runway. The second case
study, conducted for the Los Angeles airport, focuses on the potential scheduling bene ts of reduced arrival
time uncertainty facilitated by improved technologies and procedures. This increased precision promises to
improve the predictability of air tra ¢ managed by an automation system.

Il. Background

The speci ¢ behavior of the bottleneck e ect, which leads to congestion, depends heavily on the topology
of the airspace. Figure 1 shows an example of an airspace topology with four meter xes (see Appendix)
surrounding a TRACON with ve runways. Whereas the freeze horizon (see Appendix) is a temporal
concept, it can be converted to a spatial curve for a given aircraft with a known speed pro le. Examples of
two aircraft and the spatial representations of their freeze horizons are also shown in the gure.

Spatial representation
of ime-based
scheduling freeze
horizons

Runways

S

~/>

Figure 1. Example airspace showing center, freeze horizons, meter xes, TRACON and runways.

The fundamental considerations underlying a study of terminal airspace topology are as follows. A natural
and widely used framework for modeling general transportation networks is a ow network as described by
Cormen et al.® and Kotnyek et al.’® This framework provides a well-de ned measure of capacity and
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formulations of mathematical problems aimed at managing tra c congestion and meeting tra ¢ demand
(referred to as scheduling problems in operations research as described by Bellman et al.''). Most of the
constraints speci c¢ to aircraft ight scheduling can be roughly classi ed into two types; adhering to schedule
and maintaining safety. Those of the rst type are aimed at making sure that the time allotted to the
aircraft (by a schedule) to traverse a segment of airspace is consistent with the aircraft’s capabilities. Those
of the second type are aimed at safety. Constraints of the rst type heavily depend on the speci ¢ airspace
topology. Constraints of the second type are mostly focused on meeting the FAA’s separation requirements.

Two metrics indicative of airport utilization and controller workload are throughput and the probabil-
ity of separation loss (see appendix A, section Minimum Separation Time, Separation Loss, and Bu er).
Low throughput indicates unused maximum airport capacity. High probability of separation loss indicates
increased workload for the controller, who must then intervene and guide the aircraft.

The presence of costs and constraints has naturally led researchers to approach scheduling as a problem
in constrained optimization. A trend in such research is the use of mathematical (e.g., linear, mixed-integer
linear, and nonlinear) programming to compute arrival schedules that minimize a given cost functional.?
These techniques have been applied to domains of the airport surface tra ¢ management>4 and en route
air tra ¢ ow management (TFM).1® Whereas the mathematical programming framework provides optimal
solutions when the computation converges, most optimization software tools do not have the large-scale
stochastic Monte-Carlo simulation capability needed to investigate wide parameter ranges and representative
data samples. Historically, implementation of this capability has been hindered by the heavy computational
demands of this type of problem. However, fast-time simulation capabilities, achieved by reducing complex
spatial problems to time-based problems, are needed to support human-in-the-loop (HITL) simulations which
are necessary for maturing ATM technologies. The research described here is conducted with a view toward
a HITL simulation of precision arrival scheduling.

I11. STASS

The following is a brief description of the original STASS; for a detailed description, see Ref. 18. STASS
was designed as a time-based scheduling simulation tool that models aircraft arrivals in the terminal area.
The scheduling is performed in two steps using (1) the Center Scheduler to schedule aircraft from the freeze
horizon to the meter xes and runways and (2) the TRACON Scheduler to schedule aircraft to the runways
upon their arrival at the meter xes. Uncertainty in arrival times is modeled at the freeze horizon, meter

xes, and runways.

STASS uses two types of constraints: inter-aircraft separation and transit time bounds. The required
inter-aircraft spatial separations, mandated by the FAA, are converted in STASS to time constraints using
nominal aircraft speeds at the meter x and runway. Transit time constraints are the minimum and maximum
transit times for aircraft traveling through the center and TRACON airspaces.

Using Monte Carlo techniques, a given set of input parameters are evaluated by running multiple iterations
of STASS on a data set of aircraft with the arrival uncertainties randomly sampled during each iteration.
The aggregate metrics generated include throughput, delay, and fuel burn statistics.

V. Expanded STASS Modeling Capabilities

The terms and acronyms used throughout this section are listed in the Nomenclature section at the
beginning of this paper and are de ned in detail in the Appendix. A comparison of the two versions of
STASS, the original version and the expanded version, is summarized in Table 1.

V. Expanded STASS Architecture

This section describes the algorithm ow of the expanded STASS system. This system runs ve algo-
rithms in a sequence. The outputs of some of the algorithms are fed into others as inputs. The order and
input/output ow are described in the bulleted list and Table 2 below. The rest of this section gives an
overview of how the algorithms interact.

The ve algorithms (each brie y described at the end of this section) are executed in the following order.

The Freeze Horizon Simulator.
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Table 1. Comparison between original and expanded STASS versions.

Original Expanded | Description
Time advance | No. Yes. Aircraft can be scheduled to arrive at the meter x
de ned? or runway earlier than their nominal arrival time.!
The amount of allowed time advance is speci ed as
parameters, TAyge and TArwy for the meter x
and runway, respectively. This capability is nec-
essary for exploring the concept of time advance,
envisioned in future operations.
How is Maximal | A constant | A percent- | To model delay using speed control alone, the
TRACON Delay | value for all | age of the | maximal delay that can be scheduled in the TRA-
(MTD) de ned? | aircraft. aircraft’s CON is speci ed, following Ref. 18, as a percent-
individual age of each aircraft’s nominal time to y from me-
TTF. ter x to runway. Absorption of delay solely by
speed control has the potential to reduce controller
workload by avoiding path changes.
Constrained po- | No. Yes. Sequencing by Constrained Position Shifting by
sition shifting al- at most k positions (CPS-k)optimizes the se-
lowed? quence at individual runways while preserving the
ordering among aircraft originating from common
routes (overtakes not allowed).
Considers meter | No. Yes. When creating runway schedules, aircraft runway
X  constraints ETAs are calculated considering the e ect of me-
when computing ter X constraints. The previous version assumed
FCFS ordering? no delay would be taken at the meter x when
compiling FCFS runway order. Taking account of
meter X constraints at the outset prevents the loss
of capacity that can result from meter x overload.
Separation  at | No. Yes. Aircraft are delayed in the TRACON in order to
runway en- enforce minimum separation at the runway be-
forced? tween pairs of aircraft. The original version com-
puted the actual times of arrival at the runway
without introducing additional delay to enforce
wake separation, merely counting the number of
runway separation violations.
Which airports | DFW DFW, LAX, | The three airports are modeled with their most
implemented? ATL frequently used runway con gurations.
Number of met- | 14 88 Additional metrics allow categorization of delay
rics causes, tracking of individual aircraft data, and
analysis of aggregate system behavior.
Storage system Plain Database Simulation parameters and results are stored in
text le a database for exible access using Structured
Query Language (SQL).
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The Center Scheduler (Appendix).
Freeze Horizon to Meter Fix Simulator.
The TRACON Scheduler.

Meter Fix-to-Runway Simulator.

The input to each algorithm includes the same set of aircraft; the number of aircraft is denoted by K.
For each aircraft object, there is a 5-tuple of information:

(aircraft ID, wake class, engine type, meter x, FH ETA)

The output of each algorithm except the last is included in the input to the next algorithm. These inputs
and outputs are summarized in Table 2.

Table 2. List of STASS inputs and outputs.

Inputs Outputs
FH Simulator K aircraft FH ETAs FH ATAs
Center Scheduler K aircraft, FH ATAs MF STAs
FH to MF Simulator K aircraft, MF STAs MF ATAs
TRACON Scheduler K aircraft, MF ATAs Runway assignments, RWY STAs
MF to RWY Simulator | K aircraft, RWY STAs | RWY ATAs

The Center Scheduler imposes a separation constraint of the form (1) (see the section Minimum Separation
Time, Separation Loss, and Bu er) at the meter xes and at the runways. The TRACON Scheduler imposes
such a constraint only at the runways.

During every consecutive execution of the above algorithms, the FH Simulator perturbs the FH ETAs to
create FH ATAs. The Center Scheduler computes a schedule at the meter x, taking into account runway
availability by constructing a preliminary runway schedule, and assigns to each aircraft an MF STA. The
FH to MF Simulator then perturbs the MF STA by added a sample valuel” of the meter X arrival time
uncertainty (a random variable described in more detail below) to generate an actual time of arrival at the
meter x (MF ATA). The MF ATAs are adjusted, if necessary, for minimum separation from prior aircraft
at the meter x:

MFSTA + (MF arrival time uncertainty)

MFATA = max ] A o i
(previous aircraft’s MFATA) + (minimum separation)
The TRACON Scheduler computes a schedule at each runway and assigns to each aircraft destination runway
and a corresponding RWY STA. The Meter Fix to Runway Simulator then perturbs the RWY STA by adding
runway arrival time uncertainty to generate an actual time of arrival at the runway (RWY ATA). The RWY
ATAs are adjusted, if necessary, for minimum separation from prior aircraft at the runway:

RWY STA + (RWY arrival time uncertainty)

RWY AT A = max . ] . .
(previous aircraft's MFATA) + (minimum separation)

A. Jobs Database

The jobs database is used to manage the list of simulation runs (jobs) that need to be executed. The database
is created by the STASS component called the jobs loader program(JLP). The JLP reads in a user-speci ed
parameter input le that contains a list of parameter names and, for each parameter, a set of values. Using
this input, the JLP then computes all permutations of the parameter values to create a list of jobs that are
loaded into the jobs database. This database contains for each job the following simulation-speci ¢ data:
status, name of the assigned computer, start time, and end time. The availability of this data enables the
user to query the jobs database to determine the status of the simulation and estimate the completion time.
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B. STASS Database

The STASS database is used to store the data output during a run of the simulation and to evaluate the
metrics (see section Metrics, below). The database is organized as a relational database and is designed to
have the exibility to handle new parameters and metrics without any changes to the database structure.
Figure 2 shows a diagram of the database structure with each box representing a table composed of rows of
data. The internal elements of the boxes correspond to data elds which are the columns of their containing
table.

_I paramTypes
paramTypesID ~arrivalAircraftTimes *
description JarrivalAircraft iteration
" aircraftID runID
T flightID tailNumber
type . aircraftID ‘

_I paramVals - engineType Ho== freezeHorizonNTA
runlD wakeClass L freezernzonATA
paramTypesID feederFix feederFixETA
value N feederFixSTA

feederFixXTA
feederFixATA
centerAssignedRunway

“IresultsSingleVals +

runID Jrun v _literations centerAssignedRunwayETA
typelD ., mnID | " iteration . - centerAssignedRunwaySTA
' jobID runID 1 .
value . . traconAssignedRunwayETA
> : traconAssignedRunwaySTA
k4 I runwa
yXTA
: I resultsMultiVals runwayATA
“Iresul es v
typelD tTyp runID runway
e typelD >
description <
xVal
tableName

yVal

Figure 2. STASS database design.

The data generated by a run are stored with its corresponding simulation parameters and metrics. The
parameters are stored as scalars. The metrics come in two types, 1) single-value metrics that use a scalar
(such as total throughput and total delay) to describe a run, and 2) multiple-value metrics that use a vector
(such as a time-varying curve of average throughput over time).

The database has the capability to store, among other data, every ETA, STA, and ATA, at both the
meter X and runway, for every aircraft in each iteration of each run. Raw data values such as estimated time
of arrival (ETA), STA, and actual time of arrival (ATA) are stored for the Center and TRACON schedulers.
Although incurring performance costs, storage of such a large amount of data opens numerous possibilities
for post-run analysis. New metrics that are conceived of after the simulation can be evaluated from the raw
data.

C. STASS Execution

STASS is designed to run in parallel on a network of computers.To execute STASS on one or more computers
in the network, one rst runs a launch program on each of these computers. This program determines the
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number of processors available on that computer and creates, for each processor, a STASS process. Each
STASS process queries the jobs database, which is accessible by each computer in the network, to retrieve a
job assignment and then updates the database atomically to ensure that no other process can be assigned
the same job. When a STASS process is completed, it sends its results to the STASS database, updates the
jobs database to mark job completion, and queries for a new job. The exibility of this execution design
allows a computer to withdraw from a simulation, delegating its assigned jobs to be executed by another
computer in the network.

For the results published by Thipphavong and Mul nger,® STASS was executed on approximately 25 8-
processor computers. The simulation consisted of over 30,000 runs with 500 Monte-Carlo schedule iterations
per run.

D. Results Viewer

As an interface to the new version of STASS, a graphical program called the Results Viewer (see Figure 3)
was created to facilitate quick visualization of the simulation results. Queries using the original parameter
values show graphs that represent the e ects of changing individual parameter values. Multiple parameters
can be selected to show the correlations between parameters over multiple result types. This alleviated the
need to export the data to be plotted in an external program. This capability to export data from the
Results Viewer, however, has been retained.

STASS DB Viewer

File Graph Help

[ Parameters | Results Run ID Parameters Results
o = =z — N |1395 | Description Values Description Values
Feeder Fix Buffer 17| 1300 CPS Sequencing 0.0 [a] | Max Runway Change (0.0 B
I { ) 3 1403 Demand Ratio 3.0 Meter Fix Error Ratio  [0.742409051349
1407 Feeder Fix Buffer 15.0 = Meter Fix Violations 853.028
Any 0.0 150 300 450 600 Feeder Fix Sigma 15.0 Win Delay -12.9618113042
Feeder Fix Sigma 1411 Max Time Advance 0.0 J Peak Throughput 197.832 =
- » . Max Time Recovery 0.0 Runway Error Ratio 0.0
— Max TRACON Delay 0.1 ] Runway Violations 0.0 v
Any 0.0 75 15.0 225 30.0
Max Time Recovery Graphs
. ) (AAR Std |  Arrival Demand | Delay Fuel Std | AAR | Delay | Delay Std |  Delay Fuel |

Any 0.0
200

AAR
Runway Sigma
— O P ;
: 150

Any 0.0 T 15.0 225 30.0

> 100
Max Time Advance
' L 50
Any 0.0 | |
Demand Ratio 25 50 75 100 125 150 175 200 225 250 275 300 325
C D X
Any 3.0 [+ —1395 —1399 1403

jdbc:mysql://afstass01.arc.nasa.gov:3306/ztl_3h_20101029

Figure 3. A sample image from the STASS Results Viewer software program.

VI. STASS Settings Used in the Simulations

A. Praobability distributions used for arrival time uncertainties

In STASS, the probability density function for all arrival time uncertainties is an approximation of the zero-
mean Gaussian, truncated at 3 standard deviations on either side of the mean. This computation of arrival
time uncertainty is the same as used by Meyn and Erzberger in their study of airport arrival capacities.'®
Di erent values of the standard deviation are chosen for meter x arrival time uncertainty and for runway
arrival time uncertainty.
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B. Monte-Carlo simulations

To evaluate the e ect of the arrival time uncertainties on the above metrics, a data sample is needed where
each sample point includes

(MF STA, MF ATA, RWY STA, RWY ATA).

These example data were generated by xing a set of parameter values and consecutively executing the four
algorithms described above. Each execution is termed an iteration. For a xed set of parameters, we perform
between 500 and 1000 iterations. The collection of all iterations corresponding to a set of parameter values
is called a run.

C. Metrics

From the output of a run of STASS{i.e., of the sequence of the ve algorithms described in section 4,{a
number of metrics can be computed. A few of the most commonly used metrics are shown in Table 3. The
following two metrics are used for the case studies presented below.

1. Average throughput: given a sequence of N aircraft and the time stamp of each aircraft’s landing,
the makespan is the di erence (latest landing time earliest landing time).The average throughput is
de ned as the ratio of the number of ights to the makespan.

2. Probability of separation loss: the probability of separation loss is de ned as the probability that a
given in-trail pair of aircraft will experience a separation loss. This probability is approximated by
the statistical relative frequency!’ of the occurrence of separation loss in the given sample of the N

landing.
Table 3. STASS metrics.
Average Throughput Peak Throughput
Runway Violations Meter Fix Violations
Max Delay Makespan
Average System Delay Average Delay (TRACON)
Average Feeder Fix Uncertainty Delay | Average Delay (Center)
Average Runway Uncertainty Delay Average Runway Assignment Delay

VII. Case Studies

A. Analysis of correlation between fractional throughput and meter x-to-runway ratio

This case study, complementing the research e ort reported in Ref. 8, focuses on the interaction between
terminal airspace topology and scheduling performance. Given an airspace topology where multiple ows
can merge at a meter X, the meter x-to-runway ratio (MFRR) is de ned as the ratio of the total number of
meter Xes to that of runways. The importance of this ratio to scheduling design is as follows. Observation
of simulated data suggests that fractional throughput (de ned below) and meter x-to-runway ratio are
strongly correlated. The intuitive basis for this hypothesis is Kirchho ’s Current Law!® applied to a static
network ow on a directed graph G = (V; E) with each edge (representing a route segment) having unit
throughput capacity. Namely, if N ows merge at a vertex u 2 V (i.e., if u has in-degree N and out-degree
1), then the out ow from u cannot exceed one unit, yet the in ow into u can equal N units. Thus, u is a
bottleneck where the demand exceeds the min-cut® capacity by a factor of N. In the airspace regions for
arriving tra ¢ we are considering here, ows are merged at meter xes, and the above network ow model
applies in that the runway-to-meter X ratio serves as an estimate of the factor N.

To explore the above hypothesis more systematically, let T be the set of the four tra ¢ types assumed
in STASS; i.e.,

T = fheavy, large, 757, smallg
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For each type t 2 T, let m(t) denote the number of aircraft of type t present in a data sample generated
by a run of STASS. (Thus, m is a function that assigns to each element of T a nonnegative integer.) This
function will be called a tra c mix; the tra ¢ mix re ects how many aircraft of each kind are present in a
data sample generated by a run of STASS.) The statistical relative frequency (denoted below by f(t)) of an
aircraft type t for the given tra ¢ mix m is de ned as the ratio of the number of aircraft of type t to the
total number of aircraft; i.e.,

m(t)

21 M()

Given a tra ¢ mix, we consider the experiment of picking, randomly, an in-trail pair of aircraft and
recording their respective types (and, later, the corresponding required separation at the runway). Thus,
each outcome of the experiment is an ordered pair (t1;t) of aircraft types. The set S of all such pairs is,
therefore, the sample space of the above experiment.

With suitable assumptions of statistical independence, the probability of the outcome (t;;t;) 2 S is
de ned as the product

f(t) =

p(te; tz) = F(t)F(t2)

Furthermore, to each outcome (t;;t;) we assign the minimal required separation (at the runway) d(ty;tz),

which is therefore a random variable on the above probability space. This random variable has an expected

value'” equal to >

drwy = d(ty; t2)p(ty; t2)
(t1;12)2S

This expected value is called the average minimal separation at the runway. The average random through-

put at the runway (ARTrwy ) is de ned as
1

dRWY

and represents the average number of aircraft that would arrive during unit time if ordered randomly and
separated minimally.

0.95

0.9

Ratio of 0.85

STASS
throughput g
to expected

0.75
0.7
0.6 i | i | ; | |
%.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Meter-fix/runway ratio

Figure 4. Linear t of three airports ratio of STASS throughput to expected throughput corresponding to
their meter- x/runway ratio.
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A fractional throughput of a given STASS run is de ned as the ratio of that run’s throughput to the
corresponding ARTrwy . The fractional throughput of a run represents that portion of the ARTrwy
actually realized in the run. Use of FCFS on multiple runways, however, may e ect an ordering that is
not random on a particular runway (thus deviating from the assumption of random ordering made in the
derivation of the ARTrwy ), Which can result in a fractional throughput exceeding 1.

The simulation results used in this analysis were generated by simulating twice the demand observed in
operations during peak hours. This level of demand was su cient to ensure saturation at the meter xes.
Examining the fractional throughputs and the MFRRs for three airports, LAX, ATL, and DFW, a scatter
plot of the three data points exhibit a strong correlation (coe cient 0.9998), shown with a linear t for
reference in Figure 4.

B. Potential scheduling bene ts of reduced arrival time uncertainty

Arrival time uncertainty (de ned in the section Arrival Time Uncertainty) can be reduced by introducing
precision spacing technologies, airborne and on the ground. Among the potential bene ts of such reduction
is an increase in throughput. This increase is attained because with higher precision in arrival times a smaller
bu er su ces to maintain the same upper bound on the probability of separation loss.

To analyze the potential bene ts quantitatively, expanded STASS was used to perform Monte Carlo
runs for three airports, LAX, DFW, and ATL. (For details on the probability distribution of arrival time
uncertainty at meter xes and runways, see section 4). In a given airspace topology, let Mg and rwy
denote the respective standard deviations of the arrival time uncertainty at the meter xes and at the
runways. Letting ng (in seconds) range over the values 60, 30, 15, 0, and letting rwy (in seconds) range
over the values 30, 15, 3, 0, a STASS run was performed for each of the possible value pairs ( mr, rRwy).
For each value pair, the runway bu er was allowed to range from 0 to 20 in steps of 3, while the meter x
bu er was held at the constant value 10 sec.

0.7

0.6\

0.5

Reducing uncertainty

0.4 from 15to 12 seconds _|
Runway results in 4.3 seconds
Separation * runway buffer reduction
Loss i 4
Frequency
0.2 _ ___,__ - _;_ - GBWY_=1E ]
i ) GRWY=15
0.1 Teogy 12
\o Gy =9
Srwy , E o R
0% L i = 1
0 5 10 15 20 25

Runway buffer (s)

Figure 5. Runway: RFSLRrwy Vs. bu er. Dashed horizontal line represents a separation loss frequency of 0.2.

The statistical relative frequencies of separation loss calculated from the simulation results for ATL with
mr = 30 are plotted in Figure 5. To each value of grwy corresponds a curve that is the graph of the
(statistical) relative frequency!’ of separation loss (RFSLgrwy ) as a function of runway bu er. The plots
show, for example, that with RFSLrwy = 0.2, a reduction of rwy from 15 sec to 12 sec results in a
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runway bu er reduction from 18.2 sec to 14.5 sec. The plot of throughput as a function of runway bu er
for the same run, in Figure 6, shows that this reduction in runway bu er raises average throughput (in
#aircraft/hr) from 90.5 to 94.6, an increase of 4.5%.

110_ | | | I |
q
105 4
Decreasing runway buffer from
18.3s to 14.5s results in a 1
or .
100k 4.5% increase in throughput ]
Average
throughput 1
(#ac/hr)
85 | | |
0 5 10 15 20 25

Runway buffer (s)

Figure 6. Runway: average throughput vs. bu er, for two values of Rrwy -

VIII. Discussion

We have described the data generation and processing capabilities acquired by updating the STASS
software originally written at NASA for airport capacity studies. Because of the complexity of ATM op-
timization problems and the presence of variables inherently random, the goals of research into optimal
solutions necessarily include knowing the individual and joint probability distributions of these random vari-
ables. Estimation of these probability distributions, in turn, requires data samples, which are frequently
unavailable in su cient quantities from operational data. In section Two Case Studies Using Expanded
STASS, we have demonstrated the ability of the expanded version of STASS to provide such data samples.
In the rst of these case studies, we used the data to exhibit a strong correlation (coe cient 0.9998 for the
data used) between a terminal area’s meter Xx-to-runway ratio and its fractional throughput. In the second
case study, we analyzed the potential scheduling bene ts of reduced runway arrival uncertainty. The analysis
revealed, in particular, that a 4.5% increase in airport arrival throughput was achievable by reducing arrival
time uncertainty from 15 seconds to 12 seconds.

IX. Directions for Future Research

Next steps include re ning the de nition of the throughput metric and introducing a capability to model
departure tra c¢. The throughput metric used in the second case study above is the average throughput,
de ned as the ratio of the number of aircraft to the makespan. A shortcoming of this de nition is that it
does not capture rapid uctuations in tra c density. A fruitful research direction is to use STASS data to
explore throughput metrics that would capture such uctuations.

The expanded version of STASS presented here considers arriving tra ¢ only. To gain a more complete
understanding of airport scheduling, research needs to include departure modeling which therefore would be
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a pro table capability if added to STASS.

Appendix: Key Concepts and Inequality Constraints in Time-Based Air Tra c
Scheduling

To model in-trail separation, we use the time-based approach, taken in Ref. 18. By using reference air-
craft speeds, separation times can be converted to separation distances, used in the FAA-mandated spatial
separation standards. Following are detailed de nitions of the terms and acronyms listed in the Nomencla-
ture.

Meter Fix (MF): a point along a standard arrival route at which each aircraft is controlled to arrive at
a certain scheduled time, these times selected to meet various operational constraints. These constraints
include FAA-mandated separation requirements, runway capacity, and terminal airspace capacity.

Transit Time (TT): An aircraft’s transit time from point A to point B is the duration of the aircraft’s
travel from A to B. In particular, the Meter Fix-to-Runway Transit Time (MR TT) is the transit time from
the meter x to the runway.

Schedule and Scheduled Time of Arrival (STA): In the recent literature and throughout this paper,
the term schedule (for a collection of aircraft in a given airspace) refers to a table that assigns to each pair
(aircraft, waypoint) a time stamp, called the aircraft’s scheduled time of arrival (STA) at that waypoint. To
schedule an aircraft to a waypoint is to assign the corresponding STA.

Freeze Horizon (FH): Once an aircraft’s STA to the meter x has been calculated, frequent changes to
the STA can be disruptive as controllers attempt to slow down, speed up, or reroute aircraft to meet the new
STAs. To prevent these disruptions, STAs to the meter x are frozen (i.e., disallowed any further changes)
when an aircraft reaches a point from which the TT to the meter X is equal to a preset value, called the
freeze horizon. A more detailed discussion of freeze horizon can be found in Ref. 20.

Arrival Time Uncertainty: Unforeseen processes, such as wind, human factors, or aircraft performance,
prevent an aircraft from meeting its STAs exactly. To capture this in scheduling models, the actual time
of arrival at a waypoint is assumed of the form (STA + error). The error, henceforth called arrival time
uncertainty, is a random variable!” with an assumed probability distribution.

Minimum Separation Time, Separation Loss, and Bu er: If one aircraft is trailing another and both
are crossing a waypoint, the actual crossing times must be separated by a time period, which is computed,
using representative aircraft speeds, from an FAA-mandated required separation distance. This time period,
called minimum separation time, is a parameter chosen in models and in the eld{depending on the engine
types and wake classes of the trailing and leading aircraft. (A failure to comply with this requirement is called
a separation loss.) Thus, the corresponding STAs at the waypoint must not be closer than the minimum
separation time:

STA¢rail  STAjeag = (minimal separation) D)

Because of the arrival time uncertainty, however, choosing the STAs separated exactly by the minimum
incurs the risk of separation loss. To mitigate the risk, one introduced a slack variable is called bu er and,
in a scheduling algorithm, aims to meet the condition

STA¢rail  STAjead = (minimal separation) @)

Estimated Time of Arrival (at the Meter Fix / Freeze Horizon): Given the location of an aircraft
outside the TRACON, a speci ¢ meter x assigned to the aircraft, and an assumed nominal route and speed
pro le, a simple calculation yields an estimate of the aircraft’s time of transit from the current location to
the meter X. This estimate is called the aircraft’s estimated time of arrival at the meter x (MF ETA). The
time 19 minutes before the MF ETA is called the aircraft’s estimated time of arrival at the freeze horizon
(FH ETA).
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Maximal TRCON Delay (MTD) and Maximal TRACON Time Recovery (MTTR): In this pa-
per, all of the considered airspaces are Centers containing a set of meter xes and a TRACON, which, in
turn, contains a set of runways (see Figure 1).This structure dictates that each arriving aircraft traverse,
after having passed its freeze horizon, two waypoints: a meter x and a runway. The delay- and time advance
margins for transit from meter x to runway are called, respectively, maximal TRACON delay (MTD) and
maximal TRACON time recovery (MTTR).

ATA: The acronym ATA will be used to denote an aircraft’s actual time of arrival at a speci ed location.
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