
Copyright ©1996, American Institute of Aeronautics and Astronautics, Inc.

AIAA Meeting Papers on Disc, 1996, pp. 342-352
A9635039, AIAA Paper 96-3513

Multiprocessor computation in the research flight simulation environment

Matthew W. Blake
NASA, Ames Research Center, Moffett Field, CA

Joseph R. King
NSI Technology Services Corp., Sunnyvale, CA

Craig Piers
NSI Technology Services Corp., Sunnyvale, CA

AIAA Flight Simulation Technologies Conference, San Diego, CA, July 29-31, 1996,

Technical Papers (A96-35001 09-01), Reston, VA, American Institute of Aeronautics and

Astronautics, 1996

We describe a new multiprocessor implementation of a very complex research flight simulation using essentially
'commercial off-the-shelf' hardware and system software. A description of the simulator and its primary
components is provided, followed by a description of the real-time system as implemented. The real-time system
spans three synchronized processors and can be expanded to 11 processors on the current hardware platform. The
implementation has provided a common environment between the multiprocessor real-time computer, integration
and test station, and desktop development systems. The system has provided significant performance
improvements and increased efficiency of operations and support. Several potential improvements are also
described. (Author)

Page 1

96-3513
A96-35039

AIAA-96-3513-CP

MULTIPROCESSOR COMPUTATION IN THE RESEARCH FLIGHT
SIMULATION ENVIRONMENT

Matthew W. Blake, NASA Ames Research Center
Joseph R. King, NSI Technology Services Corporation

Craig Pires, NSI Technology Services Corporation

ABSTRACT

This paper describes a new multiprocessor
implementation of a very complex research flight
simulation using essentially Commercial Off The Shelf
(COTS) hardware and system software. A description of
the simulator and it's primary components is provided
followed by a description of the real-time system as
implemented. The real-time system spans three
synchronized processors and can be expanded to 11
processors on the current hardware platform. The
implementation has provided a common environment
between the multi-processor real-time computer,
integration and test station, and desktop development
systems. The system has provided significant
performance improvements and increased efficiency of
operations and support. Several potential improvements
are also described.

INTRODUCTION

In the aircraft training simulator market, simulations
often run on multi-processor computers to gain the cost
efficiency of fewer computer systems utilizing less
expensive processors. The simulation developer incurs
the time and expense of partitioning the software and
verifying the complex interaction and timing between
processors only once, then numerous identical copies of
the training simulator are sold. In the research
environment the software is constantly being modified to
perform a new function. Under this environment, it has
traditionally been easier to develop and test the
simulation by having the code ran sequentially on one
processor. This avoided the difficult verification task of
ensuring each process was independently functioning
correctly and that each process was communicating in the
proper sequence with the other processes. Unlike the
training market, in the research environment there is no
economy of scale for any extra expense in developing and
testing the simulation across multiple processors since
additional copies of the simulation are not created and
sold.

When used for research purposes, flight simulation has
generally focused on one flight regime and only that part

of the vehicle and it's systems are simulated. In the case
of full-mission simulation of a commercial transport, the
entire environment that the crew experiences must be
provided. If all systems are simulated (no actual avionics
boxes), the size of the simulation software gets
extremely large. The Advanced Concepts Flight
Simulator (ACFS) is one such simulation, representing
a complete full-mission simulation of a commercial
transport aircraft and it's related systems and
environment. The ACFS software includes
approximately 500,000 lines of code, split
approximately evenly between the programming
languages FORTRAN and C. The ACFS is one of two
full-mission flight simulators at the Crew-Vehicle
Systems Research Facility (CVSRF) at NASA Ames
Research Center. The ACFS is used to study aspects of
human factors in aviation safety as well as methods to
improve aviation operational efficiency.

The ACFS simulates a generic advanced twin engine
mid-range transport (similar to a Boeing 757). The
ACFS consists of a reconfigurable cab on a 6 degree-of-
freedom motion platform with a color night/dusk Out-
The-Window (OTW) visual system. The cockpit
includes control sticks and rudder pedals, conventional
center console with throttle levers and control panels, an
overhead panel for control of other aircraft subsystems,
and 8 video display screens across the main panel for
flight, guidance, navigation, and status displays. There
is a Mode Control Panel (MCP) on the glare-shield for
autoflight control and two Control Display Units (CDU)
for interfacing with the Flight Management Computer
(FMC) simulation. This configuration provides full-
mission aircraft functionality including complete auto-
flight, auto-throttle and Flight Management System
(FMS) capability, yet the hardware and software
configuration can be changed as needed to address specific
research requirements. The ACFS can be configured to
operate with the other CVSRF simulator, a Federal
Aviation Administration (FAA) certified Boeing 747-400
simulator as well as an elaborate Air Traffic Control
(ATC) simulator. Unlike most training simulators and
the 747-400 simulator at the CVSRF, the ACFS does
not include any actual aircraft avionics boxes so the
entire simulation is fully programmable to address any
research requirements. Figure 1 shows a system diagram
of the main components of the ACFS.

342
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

jl-OUTSIDE WORLD

I—CVSRF ADMIN.

RLESERVER
& VIS. LAB
ACFS DEV.
'STATIONS
.747 SIMULATOR
ATC SIMULATOR

1PT. DEVICES

Figure 1: ACFS System Diagram

The ACFS was originally built in the mid-1980s and has
gone through many upgrades and enhancements since.
This paper addresses the recent replacement of a late
1980s Digital Equipment Corp. (DEC) VAX computer.
In replacing this computer system, the goal was to
increase reliability, provide significant spare processor
and memory capacity, and greatly increase the efficiency
in developing, testing, and operating simulation
experiments without creating extensive custom real-time
control software. The goals of increased reliability and
direct performance (processor speed and memory) were
easy to achieve as many computers provide
improvements in these areas over the mid-1980s VAX
that was being replaced. To achieve the goal of
improved productivity using COTS systems in a research
flight simulation environment led to the purchase of a
Silicon Graphics Inc. (SGI) Challenge host computer and
a set of SGI workstations.

HOST COMPUTER ARCHITECTURE

The real-time host computer is an SGI Challenge L
multi-processor computer capable of housing 12
processors. The current implementation described here

utilizes only four of the available processor slots. Each
of the processors is a model R4400 with a 200 MHz.
clock speed. The supporting single processor SGI
workstations include Indy, Indigo, and Indigo2 models
with various processors.

MEMORY MANAGEMENT

The SGI Challenge host computer is configured with
128 Megabytes of main memory, expandable to 2
Gigabytes. All critical program variables and constants
are assembled in one section of shared memory called
Global Common. The current Global Common utilizes
approximately 634K bytes of memory. The Global
Common memory is partitioned into sections along
aircraft systems boundaries such as navigation systems,
flight dynamics, etc. A common Global Common file
is processed into both C and FORTRAN INCLUDE
structure files so that the C and FORTRAN routines will
map to the same variables. Other processes, executing
in other processors, that access the shared memory
include the data collection write to disk process, the
Experimenter/Operator Station (EOS) processes, and the
FMC process.

343
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

async input 200 \is max interrupt
I XTesponse time

EOS Status Window output @ 0.5 Hz

Processor 0
(asynchronous)

Processor 1
(synchronous

real-time)

Processor 2
(synchronous

real-time)

Processor 3
(synchronous

real-time)

UNIX
high priority EOS1 EOS 2 EOSN UNIX

tow priority idle UNIX
high priority EOS 1 EOS 2 EOSN UNIX

low priority idle

itimer clock tick itimer clock tick

1 ' ~6 ms

Synchronousl/O ̂ ^ <*»"•• ™*

AT
DR-1 1 & Ethernet

idle/wait

1

idle/wait

1

idle Synchronous I/O

4T
„ ., . „ . DR-11 &EtheData Collection Semaphore

-4ms <1 ms ~22 ms ^

Aircraft Model, Systems, DC lo
Environment buffer

met

Data Collection
to Disk if buffer full idle/wait

FMS Start Semaphore
}

FMS Foreground FMS Background idle/wait

1

idle

Data Collection
to Disk if buffer full

<1 ms -1-32 ms

FMS Foreground FMS Background

Figure 2: Sample processor activity time-line

PROCESS CONTROL AND SEQUENCING

SGI's IRIX (Version 5.3) Operating System (OS) offers
a number of services and routines to control the
execution of processes running on their multi-processor
computers. These services include:

• Locking processes into memory
• Isolating processors from any external activity and
allowing only the selected processes to run on those
processors

• Setting process priorities that will run at levels higher
than any other "User" process and not be adjusted

• Synchronization of processes on different processors

Using these OS features provides the ability to force real-
time behavior on all processors other than the one
running non-real-time UNIX processes. The processor
load is currently split as follows:

• Processor 0: UNIX OS, EOS, Asynchronous
Input/Output (I/O)

• Processor 1: Synchronous I/O, Main simulation
calculations

• Processor 2: Data Collection
• Processor 3: FMC process

Processors 1 - 3 are run in an isolated mode with only
the specified processes locked in place and at the highest
priority. Since some important simulator functions are
still performed on processor 0, a "Single User" mode was
developed. In this mode, all non-essential processes and
services are disconnected from the simulator. Outside
network activity is minimized by isolating the real-time

networks with filtering bridges and routers within the
Ethernet communication hub. At simulation start-up,
all essential files are copied to local disks so that
simulator operations can be performed independent of the
shared file-server system by unmounting the file-server
disks from the real-time host. This isolation mode
allows full use of the file-server for development while
minimizing impact to the real-time simulation.

Frame timing is currently provided by the ITIMER
utility providing a resolution approaching 1
microsecond.

Communication between the various real-time processes
running on different processors is via shared memory
Global Common (GC) with synchronization using SGI
Arena/Semaphore signals. The Arena/Semaphore signals
have a guaranteed latency of less than 200 microseconds
and in practice have provided approximately 10
microseconds latency. Figure 2 shows a high level
diagram of the time line of two real-time frames with the
process semaphore signals and main processor activities.

MAIN MODEL & SYNCHRONOUS I/O PROCESS

The main aircraft model and synchronous I/O functions
are performed by processor 1. The model is partitioned
into approximately 30 subsystems such as aerodynamics,
engines, FMC communication, I/O to instruments, etc.
Each subsystem may contain hundreds of subroutines.
Execution of these subsystems is controlled by the
model scheduler (MODSCH). MODSCH controls in
what order and how often each subsystem is executed.

344
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

MODSCH determines this schedule based on an ASCII
database called the Model Attribute Table (MAT). By
modifying this MAT database, operators can quickly
change the characteristics of the simulator by
enabling/disabling modules or increasing/decreasing the
execution rate. The 30 subsystems are partitioned into
approximately 120 MAT table entries to increase

scheduling flexibility. The highest frequency loop is
currently 30 Hz (33 ms per frame). Figure 3 shows a
high level diagram describing one 33 ms frame of
MODSCH. Figure 4 shows the sequencing attributes of
one subsystem as described in the MAT table as well as
the definitions of MAT table options.

itimer clock tick

M O D S C H P R O C E S S

Module AST & viS Co^P''
Initialization n . .._ Displays & J~

a- 11 Device I/O ' Oomin.first pass only) Devices ^umm

44 H i
DR-11 links Ethernet Shared

Global
Common 1

Sema
Sig

A I R C R A F T
Hll/ Fuel& Flight I Aero, v.lsm, iMotlon Environ. &IAFS & „."

Comm weight controls [angines EOM sVslems | oue Navaids|ATS C°"9C

itimer clock tick

1
i f

ion f (f

Jl 1 1

Elherne 8K S™red

Global Common 1
Buffer T

phore Semaphore
nal Signal

Figure 3: MODSCH timeline for one frame

MAT. DAT TABLE EXTRACT: MAT.DAT TABLE DEFINITIONS:

MODEL_NAME:
ENABLED:
FRAMES:
GROUP:
TIUES.C ALLEOJNIT:
DELAY_BEFORE_HUN;
RUN_DURING_FREEZE:
RUNJJURINd RESET
RUN_AFTER_EXCEPTION:
RUN_DURING_STOP:

MODEL_NAME:
ENABLED:
FRAMES:
GROUP:
TIUES_CALLEDJNIT:
OELAY_BE FOHE_RUN;
RUN__DJRINGJ:REEZ£:
HUN DURING RESET:
flUN_AFTER_EXCE PTION:
flUNJDLJRING.,STOP:

MODEL_NAME:
ENABLED:
FRAMES:
GROUP:
TIMES_CALLe0JNIT:
DELAY_BE FOOE J1U N:
RUN_DUR1NG_FREEZE;
RUN_DURING RESET
RUN _AFTER_EXCE PTION:
RUNJJURING^STOP:

FLAPSLAT
ENABLED
MASK 010000010000010000010000010000
FCSUHF

NO

SPOILERS
ENABLED
MASK 000010000010000010000010000010
FCSURF
2
NO

MODEL_NAME - Function name as listed in MODELSTC (max 15 bytes)

ENABLED • Model is active this run: ENABLED • lie model will be celled as requested.
DISABLED - in the MAT but disabled (i.e. not called).

FRAMES • Which frames model is called; held in a 30 element mask.
ALL -allframes (111111 ...)
EVEN • all even frames (i.e. 101010 ...)
ODD • all odd frames (i.e. 010101 ..,)
NONE - only called during initialization mode.
MASK - a binary mask (e.g. MASK 001001001001)
EEQ - a number sequence (e.g. SEQ 1,5,6)

GROUP - the name of a model group defined in file acfs_dat:
MODELJ3ROUP_FILE.DAT. Each model is associated with
one group. The default is NONE. Models should be
assigned to groups of related models.

TIMES_CALLED_INIT - How many times modal should be called during
initialization mode. (Range: 0 through 200)

DELAY_BEFORE_RUN - a model can be temporarily kept from running
immediately after initialization or after each
reset for a preset number of cycles. Each process
can be set to delay a different number of cycles.

YES - delay this model before running
NO - run this model according to schedule

RUN_DURING_FREEZE - modal continues to be scheduled during freeze mode.

YES - call this routine during freeze mode.
NO • Don't call this routine during Freeze mode.

RUN_DURING_RESET - model is called with initialization mask
during RESET mode.

YES - call this routine during RESET mode.
NO • Don't call this routine during RESET mode.

RUN_AFTER_EXCEPTION - model continues to be scheduled ei/en after
an exception has been caught (e.g. zero divide}.

YES - continue calling this routine despite error.
NO • stop scheduling this model after an exception.

RUN_DURING_STOP - model is callad once while the simulation is stopping
YES - call this routine during STOP mode.
NO - Don't call this routine during STOP mode.

Figure 4: Sample MAT table and MAT table definitions

345

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

FMC PROCESS

The FMC simulation is computed on processor 3. The
FMC simulation is run as two processes; a Foreground
process and a Background process. The Foreground
process handles the I/O to the CDUs, I/O to the aircraft
model, and computation of guidance information
(comparison of actual to planned path and needed
corrections). The Foreground process is run
synchronously with the aircraft model running in
processor 1. This provides real-time response to crew
actions (keystrokes) and for continuous guidance to the
aircraft autoflight system. Communication of data is
through Global Common shared memory and initiation
of the FMC Foreground process is through semaphore
signals. The Background process handles flight planning
which includes establishing way point and path
information, aircraft performance computations,
navigation data processing, and processing the CDU page
formatting. The Background process runs in an
asynchronous mode, and runs whenever calculations are
required and when the Foreground process is not running.
This design is consistent with the software operation of
most commercial transport aircraft FMC avionics
systems.

DATA COLLECTION PROCESS

To conduct human factors research, large amounts of
information regarding complete status of the simulated
aircraft systems and all crew activities must be recorded
for post simulation analysis. To accomplish this
requirement the ACES Challenge host computer system
was configured with sufficient hard disk capacity to save
the collected experiment data during the real-time
simulator operation. The current configuration provides
2 Gigabytes of space for data collection. Software tools
have been developed to post-process the data into other
formats to meet researcher needs or provide a "quick-
look" at the data for verification.

Implementation of the data collection software was
accomplished using three run-time modules and an off-
line data definition compiler. The host initialization
module (DRG_INIT) and the real-time module
(DRH_REC) runs in processor 1 within the main real-
time load. A slave process that performs disk I/O
(DRG_SLAVE) runs on processor 2.

Setup of data collection begins with a specification of
the desired simulation variables and collection rate
(between 1 Hz and 30 Hz). This list is edited into an
ASCII data definition file with the suffix of .rec. This
file is compiled with the off-line data definition compiler
(DRC) program to create the runtime files with the .dra,
.drs, and .log suffixes.

During real-time operation an 8K byte buffer residing in
the Global Common shared memory area is packed with
the predefined experiment data at the end of each 30 Hz
frame by the DRH_REC module running in processor 1.
The DRH_REC module then sends a SGI
Arena/Semaphore signal to the DRG_SLAVE module
running on processor 2. The DRG_SLAVE module then
starts up and moves the 8K byte buffer into one of two
121K byte disk I/O buffers and checks to see if the 121K
buffer is full. If it is full, DRG_SLAVE identifies the
alternate I/O buffer as the current collection buffer for use
at the end of the next simulation frame. DRG_SLAVE
then initiates a disk write operation of the full buffer.
This utilization of two buffers is called double buffering.

Run-time control of the data collection system is
through the EOS. The data collection file to be written
to disk is comprised of three main sections. The first
section contains header information which is entered
from the EOS and includes the simulator crew names
and/or numbers, experiment number, run number, date,
etc. The second section contains definitions of the data
to be collected which is taken directly from the pre-
processed list. The third and largest section of the data
file is the actual experiment run data collected in real-
time.

EXPERIMENTER/OPERATOR STATION
PROCESSES

The Experimenter/Operator Station (EOS) currently runs
on processor 0. The process runs at a high priority non-
real-time status. The EOS is similar to the
Instructor/Operator Station (IOS) on a conventional
training flight simulator but features have been added to
the ACFS EOS to support the research requirements.
The ACFS EOS configuration was designed to allow
complete simulator control from the on-board EOS
station, at the rear area of the cockpit enclosure, or from
a remote control room area located within the facility.
Any number of EOS processes can run concurrently so
several users can monitor different simulator activity
simultaneously.

SGI Indy workstations were selected for the EOS to
provide the simulator user the desired Graphical User
Interface (GUI). The EOS process actually runs in the
SGI Challenge host computer via remote login.
Communication between the EOS Indy systems and the
host uses standard Terminal Control Protocol/Internet
Protocol (TCP/IP) protocols imbedded within the SGI
computer OS. The host resident EOS processes are
executed at a high priority non-real-time mode. Touch
sensitive screens were installed on each of the 19" EOS
displays and the display format was designed to use the
touch screen or trackball/mouse input to activate
functions and enter data.

346

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

Figure 5: The Position Page screen of the EOS

The EOS graphical displays (or pages) were developed
with the Builder Xcessory (BX) GUI editor developed by
Integrated Computer Solutions (ICS) Inc. The main
emphasis of this approach was to provide fast
prototyping of new EOS pages. This was achieved by
customizing the BX editor to become an EOS
development editor (called EOS_bx). The EOS_bx is
linked with the ACFS shared memory (or its own local
version for isolated development). A set of customized
Motif widgets were integrated with BX. These widgets
have predefined properties and a small set of fields
targeted for the ACFS-EOS environment. The ACFS
EOS widgets are as follows:

• EOS Simple Button
• ROS Arrow button
• EOS Form
• EOS Set Value
• EOS Temporary Key Pad
• EOS Scale
• EOS Page

The EOS process is a conventional Xwindow process so
it can be "pushed" and "popped" with other graphical
windows as well as scaled to different sizes.

The EOS screen layout consists of four main areas; the
Page Area (center and upper left), the Footer (along the
bottom), the Status Window (upper right), and the
Message Logger (below the Status Window). An
example EOS screen is shown in Figure 5.

The Page Area is the main window of the EOS. It
contains buttons and displays that allow the operator to
call up different pages, input values, and monitor values.
There are many pages in the EOS that can be selected and
appear in the Page Area. The Footer, also referred to as
the Hot Button Area, displays buttons which are always
accessible, regardless of what page is displayed in the
Page Area. Buttons here indicate if they cause an action,
such as starting the FMS, or call up a page, such as
Environment. The Status Window is a dynamic display
of aircraft and environment conditions. What is

347

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

displayed in the Status Window can easily be changed for
each experiment. The Message Logger window provides
important system or simulation messages to the
operator. The EOS currently has pages supporting the
following functions:

• Manual Reposition: Allows the operator to position
the aircraft by entering latitude,
longitude, heading, altitude, gross
weight, and fuel weight.

• Initial Positions: Several "canned" positions,
including aircraft configuration.

• Environment: Allows control of weather
conditions, turbulence and
visibility.

• Visual Control: Allows control of the OTW
visual system.

• Preset Weather: Allows control of visual scene
ranging from clear to zero/zero
conditions.

• Aircraft Setup: Controls aircraft configuration
and ground facilities.

Additional pages are created for each experiment's specific
requirements.

Buttons on the EOS are color coded to indicate their type
of action. Blue colored buttons call up new pages, pop-
up windows, or input value windows. Pink colored
buttons cause a specific action to take place. Pink
button actions that take place include Screen Dump,
Freeze, starting and stopping the FMS and ATC link,
and Reset. Some of the pink action buttons also can be
a different color to indicate a different current status.
These specialized buttons are as follows:

• FMS: The color of the FMS action button
indicates the state of the FMS. When the
FMS is active, the button is yellow.
When the FMS is not active, the button is
pink.

•ATC: The color of the ATC action button
indicates the state of the ATC link. When
the ATC link is active the button is
yellow. When the ATC link is not active,
the button is pink.

• Reset: This button sets the simulator back to the
last entered Initial Position (IP), regardless
of whether the IP was entered manually or
preset. The button turns yellow during the
reset and back to pink when the reset has
finished.

• Freeze: This button toggles the Simulation in and
out of the Freeze State. The state of the

1 Exit:

Simulation is displayed with text and color
on this button. Freeze on is indicated by red
and the words "Freeze On". Freeze off is
indicated by pink and the words "Freeze
Off.
Activating this button exits the EOS
utility program.

Buttons are activated when contact is released, not
initiated. If a button is accidentally pressed utilizing this
technique, the operator's finger can slide contact to the
side and disarm the button without activating it. Also,
the operator can prepare for activation by pushing the
button then watch some other screen for information on
when to activate. The operator then does not need to
look at the EOS screen, he simply releases his finger
from the screen to activate the function.

COMMUNICATION TO SUBSYSTEMS

Communication with most simulator subsystems is
done with UNIX socket procedures over Ethernet lines.
This includes the communication with eight flight
display computers, the sound generation computer, the
EOS computers, other simulators (the ATC simulator,
Boeing 747 simulator, or other simulators not co-
located), and several additional devices. Standard TCP/IP
communication protocols have been employed in order to
simplify support for communications with the wide
variety of platforms that are used on the ACFS, and to
provide an easily supported connection capability to
research systems.

Different TCP/IP packet protocols are used for different
devices. The TCP packet protocol is used for
asynchronous stream devices such as the touch screens
and alpha-numeric displays. The User Datagram
Protocol (UDP) packet protocol is used for the large
synchronous data packets that drive the flight displays.
Multicast UDP protocols are used for the Primary Flight
Displays (PFD) due to the large amount of shared data
used for the Captain's and the First Officer's displays.
This allows both processors to receive the same data and
reduce the amount of real-time network traffic. UDP
packet protocol has the advantage over TCP/IP packet
protocol of being much lower overhead on the processor
due to the connectionless nature of the communication.
Although UDP does not have as low an overhead as
"raw" protocols, it does have the advantage of being
widely accepted. This eases development by insuring
documentation and debugging tools are available and
simplifies routing to other networks to meet specific
experiment communication requirements. It has been
determined that the overhead difference between UDP and
raw protocols is minor for the ACFS application.

348

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

By utilizing standard UNIX socket communication,
virtually the same code can support both real-time
experiment operations on the Challenge computer and
simulation development on individual workstations. The
remote processes (such as the flight displays) can run on
the local development station using the same socket for
internal communication rather than over an Ethernet line.
Although the processes run slower in the development
environment, the performance is usually adequate for
developing or debugging new systems.

Communication with the OTW visual system and the
simulator I/O device driver (a Singer-Link AST device
for reading and writing to analog systems) is performed
utilizing VME boards emulating a DR-11W interface.
This is required as these systems are old enough that they
do not support Ethernet communications.

SIMULATION ENVIRONMENT

SIMULATION OPERATION

Loading, starting and stopping the simulation is
accomplished through graphical menus that execute
script files. The same executable can be used in a variety
of configurations and "customized" by the setting of
environment variables and run-time parameters.

The normal procedure is to log into the ACFS account
from one of the SGI Indy EOS workstations. A Motif
compliant ACFS Simulation Control window appears
and provides a list of the currently available simulator
bases and simulator tool options for subsystems such as
the FMS and for development tools. Desired options are
selected and the Execute button activated to initiate the
start-up operation. It requires approximately 30 seconds
for the simulator to automatically load the software to all
subsystems from the file-server or local disk and start up
the entire simulation.

Once the simulation software is loaded the simulator is
always in one of the following modes:

• Reset
• Freeze
• Freeze Off (run)

When the simulation has been reset, the simulation is
returned to an Initial Position (IP). The desired IP can be
selected from preprogrammed options available on the
EOS Position Page. The IP may be on the ground at
many different locations or in flight at some desired
location, altitude, airspeed, etc. The Freeze mode stops a
majority of the modules (aircraft, environment, data
collection) and leaves the simulation in what appears to
be a state of suspended animation. During Freeze, many
system and I/O modules continue to function to allow

the operator to inspect and control the simulation. All
normal simulator operation continues when the Freeze is
de-selected.

All simulator control functions and unique experiment
functions are controlled from one or more of the EOS
pages. The termination of the simulation is
accomplished by selecting the Exit EOS button at the
bottom right of the EOS display and then selecting Stop
on the ACFS Simulation Control screen.

SIMULATION DEVELOPMENT

Simulation development is performed on one of three
platforms. For initial development of an experiment, the
engineer runs a version of the ACFS software (called the
mini-ACFS) on a desktop SGI workstation. The mini-
ACFS and full simulator have nearly identical software.
The main aircraft model, FMC, and EOS are essentially
identical. The communication to the flight displays is
the same, but the socket connects to an abbreviated
version of the display software that is running on the
local workstation, rather than over an Ethernet line to the
display computer for the cockpit. A few additional mini-
ACFS specific control and display tools are available to
make up for the lack of cockpit hardware availability.
All these processes run in the one processor in the user's
desktop machine instead of being distributed in the
Challenge computer and over Ethernet lines in other
computers. The system does not provide the process
isolation and clock timing necessary for real-time and the
limited processor capability limits the system to running
slower than real-time. However, this is generally
adequate for initial experiment development.

As the development process progresses, the engineer
moves to a more powerful integration and test station
that has several video display screens (vs. the one on
his/her desk) in order to verify the functionality and
interaction of the new system with all the ACFS
software subsystems. Again, the development station
utilizes essentially the same code that is used on the full
mission simulator, only differing in some control and
scheduling routines. Due to the increased screen space,
this configuration can run the exact flight display
software. As with the desktop mini-ACFS, the test and
integration station does not run real-time, however this
is generally adequate for most debug and test procedures.

For final test and verification, the entire ACFS is
utilized. This provides the exact environment that will
be used for experiment operations. This is particularly
useful for tuning scenario code and event timing for
experiment-specific operations. Following this phase,
experiment operations and data collection takes place.
Figure 6 shows a diagram representing the development,
integration and test, and real-time facility interface.

349

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

Engineei
Desk

Figure 6: ACFS development, integration & test, and real-time interaction

DEVELOPMENT TOOLS

For any stage of experiment development or operations
most of the same tools are available. For a complete
suite of debugging tools, the user compiles in debug
hooks (a compilation flag) and then invokes the SGI
CaseVision tool set. This tool set includes a Graphical
User Interface (GUI) front end to the debugger, a static
code analyzer, complete interactive help and
documentation, and much more. The primary tool used
for ACFS development has been the CaseVision
Debugger (CVD). CVD is a modern graphical-based
debugger providing a high-level language-based source
code display and complete features such as break-points,
single step, display and modify. Although CVD extacts
a small performance penalty, the impact when used in
real-time for process inspection has been negligible. Use
of the tool in this way does not cause frame over-runs.

If the user wants to simply inspect and deposit into
application code variables, he invokes an in-house built
tool called the Global Common Utility (GCU). This
tool provides access to all Global Common variables
(which includes most parameters users wish to inspect or
change).

In addition, there are other tools available for plotting
and analysis. The current plotting process uses a
predefined set of Global Common variables edited into an
ASCII file. A plotting data file is written to during the
real-time experiment run. The public domain plot utility
PLOTMTV is used to plot and print the collected data.

CONFIGURATION MANAGEMENT

Software modifications and upgrades to the ACFS are
made frequently to support the ongoing human factors
research. Some changes to the simulation software are
retained to become part of the baseline, others are
temporary for a given experiment and are removed and
archived. At any one time there may be up to a dozen
engineers working on various experiments or doing
software maintenance for the ACFS. However, to ensure
integrity of the simulation during actual experiment
operations, all development activity is isolated from the
real-time systems. A rigorous configuration
management system is required in order to track these
continuous software and data modifications efficiently.
To meet these constraints and provide a productive
development environment, all source files and data are
maintained on a file-server. A SUN Spare 10 computer
system with dual CPUs, 96 Megabytes of memory, and
7 Gigabytes of disk storage provides the Network File
System (NFS) support for the engineering workstations.
Development activity on the ACFS host computer
system uses the NFS disk system. Real-time simulation
loads can be run directly from the file-server. Tested
"experiment-ready" real-time executables and data files are
copied to ACFS host local disks to ensure isolation from
the development environment during experiment
operation.

The simulation software is maintained in multiple
directory trees representing a logical decomposition of
the flight simulator systems. Related software modules
including their support files and data structures are
defined as a Computer Software Configuration Item

350

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

(CSCI). The UNIX Source Code Control System
(SCCS) is used to maintain revision level changes at the
source code and data level. In the current system, a
simulation development project is accomplished by
doing the initial development in a minimally controlled
base. As work progresses, the software is migrated to a
moderately controlled base for system integration.
Finally, the software is validated in an experiment base
which is then frozen for the duration of the experiment.

PERFORMANCE AND PRODUCTIVITY
IMPROVEMENT

The improvement in processor performance over the
older system was dramatic, approximately one order of
magnitude for each processor (with potentially 12
processors available). Memory availability is much
more than required and hardware reliability has been
100%.

Improved productivity was gained in several ways. First,
through the use of COTS hardware and software the
facility does not need to maintain as large a staff of
software personnel devoted to supporting an in-house
real-time operating system. This frees up more of the
software staff to develop research-specific software.
Additionally, SGI provides a state of the art software
development environment. The key elements of this
environment can be utilized with the real-time OS, so
the user is not required to develop and test his software in
a non-real-time environment and then port it to the real-
time system for re-testing. Also, the user does not need
to learn and stay proficient at two or more different
environments, and the system support staff does not need
to support a unique (often in-house developed) real-time
system. The improved toolset and the use of the same
toolset for development and real-time has increased
productivity.

Productivity is also significantly improved through the
use of many mini-ACFS systems. With minor
modifications to the simulation startup and schedule, the
entire simulation can run on small single processor SGI
machines in non-real-time. This provides a system that
NASA researchers can use on their desks for initial
concept evaluation, as well as for ACFS engineers to
implement changes, and do initial testing. This reduces
the need for expensive duplicate simulators for
development, or using dedicated time early in the
development phase on the main simulator complex.
Since the cockpit flight displays are driven by SGI
computers, the same processes can run on the
development computer concurrently with the model,
again not in real-time, but fast enough for development
of most new research systems.

FUTURE PLANS

The system, as developed, is successfully performing
research experiments more reliably and with less
development effort than the previous system, however,
there are many improvements planned. Some of the
improvements are listed here.

The BOS functions and asynchronous I/O are computed
on the same processor as the UNIX OS. As new
processor boards are added, these functions will be moved
to isolated processors to ensure appropriate response
time.

The EOS will have several enhancements. The primary
improvement will be a map display to provide the
operator with better situational awareness. A real-time
graphical EOS data plotter will also be added. Different
COTS systems will be periodically evaluated and may be
considered as replacements.

Current message logging has a simple priority and
message structure. A flag based priority system would
provide the operator a cue to important error, warning,
and informational situations as they arise. This kind of
message system is similar to the Engine Indication and
Crew Alerting System (EICAS) messages used in the
aircraft itself.

SGI provides a "frame scheduler" capability to provide
synchronization control of processes distributed across
multiple processors. The frame scheduler also provides
access to a much higher resolution clock (21 nanosecond
resolution). As new advanced subsystems are added to
the ACFS simulation or higher frequency calculations
are needed, the SGI real-time frame scheduler will be
implemented.
An improved GCU is planned to allow more flexibility
for inspection of variables in the main executive,
MODSCH. The current GCU only allows predefined
data files to be used. The new GCU will allow real-time
editing of the variable list being used, as well as
changing the display format, and browsing through each
of the Global Common sections. A further enhancement
should allow the changing of local variables as well as
Global Common variables.

Planned improvements to the Software Configuration
Management System include the ability to modify
development configurations from the engineer's desk top
with complete isolation from other simulation user
activities by utilizing specialized UNIX scripts and
MAKE files.

The integration and test computer is currently a single
processor SGI workstation with two graphics displays.
An SGI Onyx would provide the ability to closely model
the multi-processor architecture that the host platform

351

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

has while also supporting more displays. These displays
could be used for a simulated OTW display, more flight
instruments, as well as operator/developer interaction.
This should greatly improve integration and test
efficiency.

In addition to the computer system enhancements listed
above, there are three major hardware improvements
planned. A new high quality OTW Visual System and a
new I/O system will be installed in the ACFS during the
next year. In addition, a commercial Heads-Up Display
(HUD) system, similar to current systems gaining
popularity with several of the airlines, is being
considered for installation in the ACFS.

SUMMARY

A multiprocessor implementation of a very complex
full-mission research flight simulation using essentially
Commercial Off The Shelf (COTS) hardware and system
software is described. The real-time system has provided
a significant performance and reliability improvement.
The development and real-time implementation has
provided common environments between the multi-
processor real-time computer, integration and test
station, and desktop development systems. This
common development, test, and operations environment
saves resources in supporting many different platforms,
physically moving files around, and user concern over
data control. The use of common control and debug
tools on all systems means there is no lost productivity
by users being forced to learn new systems or move
between different systems. There are several
improvements planned to the simulator hardware and
software to increase efficiency of development and
operations even further.

References

Builder Xcessory 3.5 User's Guide
Integrated Computer Solutions Incorporated
Copyright 1995

Builder Xcessory 3.5 Reference Manual
Integrated Computer Solutions Incorporated
Copyright 1995

Advanced Concepts Flight Simulator
Programmer's Manual and ACFS Procedures
PM-020 Last Revision May 16, 1996

SGIIRIX On-Line Document Set
IRIX 5.3

352

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS

Copyright ©1996, American Institute of Aeronautics and Astronautics, Inc.

