Weather Needs for UAS Operations

Brian Haynes - President

July 2016
UAS Weather Needs – Sensurion Perspective

Sensurion Background:

- 10-year company history
- Core team 20+ years working together
- Extensive manned aircraft experience
- Extensive weather experience
- Worked with NASA and NCAR in many areas, for many years
- Extensive UAS Experience
UAS Weather Needs –
Sensurion Perspective

Sensurion Background:

• Extensive manned aircraft experience
 • Major Airlines, GA, Military
 • Pilots, Operations, Management
 • Technology – Avionics, Airframes, Weather, Security, Communications, etc.
• Entrepreneurial Businesses
 • Weather Dissemination, Forecasting
 • Weather Observation / Collection
 • Weather Uplink and Downlink, Displays, Communications

We understand how hard it is to operate aircraft safely and reliably – and yet profitably – and what it takes to do that, and how the manned aviation industry achieved those goals.

The UAS industry still has a long way to go in all three of those areas, and can learn a lot from the manned aviation industry – if it will...
UAS Weather Needs – Sensurion Perspective

Sensurion Background:

• Extensive weather experience
 • Airline weather requirements, systems, & solutions
 • GA weather & flight planning systems
 • R&D, deployment and long-term ops of national systems
 • Preflight & in-flight
 • Dissemination and Collection Systems
 • R&D
 • Weather Radar Systems
 • Weather uplink, downlink, and cockpit displays
 • Turbulence, icing, Winds, Deicing
 • Data Observations & Collection From Aircraft

We can take advantage of experience in “traditional” weather & aviation, but must also avoid “default thinking”
Typical sUAS Aircraft

TYPICAL Fixed-Wing sUAS:
- Conventional Fixed Wing Design
- Hand, rail, or gear takeoff
- Flight durations 60-120 mins
- Multiple Payload options
- Best BLOS candidate
- 0-60 kts, stall speeds 10 kts
- 20 kt max l/d
- Full autoflight avionics
- Variety of recovery systems

TYPICAL Multirotor sUAS
- Ease of launch and flight
- Flight duration <15-45 min
- Visual/EO sensors
- 0-20 kts speed
- Strong reliance on GPS
- Manual Control
- Limited Autoflight
- About 90% current vehicles

Sensurion Magpie MP-1

Sensurion MP-4
MAGPIE MP-1
• Fixed-wing aerial sensor platform
• Commercial utility UAV for numerous applications
• Certified by FAA
 – 1st Special Airworthiness Certificate through FAA Test Range
 – 333 waiver for commercial operations
 – Registered (N#)s
 – Numerous COAs – airspace approval
 – FAA approved manuals
 • Operations
 • Maintenance
 • Training
 • Safety Checklist

MAGPIE

MP-1 Fixed-Wing Specifications

- **Model #:** MP-1
- **Endurance:** 1.5 hours
- **Weight:** 10–15 lbs.
- **Payload:** Up to 5 lbs.
- **Powerplant:** Electric/LiPo
- **Wingspan:** 95.75 inches
- **Length:** 62.50 inches
- **Landing Options:** Skid, wheels, skis
- **Datalink:** Configurable to operating environment, location, regulations
- **GCS:** Autoflight programming, graphical flight data, payload status/data, datalink, data storage, networking and weatherproof
MAGPIE MP-4 / MP-4T

- Multirotor aerial sensor platform
- Commercial utility UAV for numerous applications
- Simple to fly and program
- Manual or flight planned route
- GPS/WAAS centimeter precision positioning
- Tethered up to 200’/65m
- Tethered unlimited flight time
- Can launch / recover from small area

SENTINEL

MP-4/MP-4T Multi-Rotor Specifications

- **Model #:** MP-4/MP-4T
- **Endurance:** 27 min/indefinite (MP-4T)
- **Weight:** 6.5 lbs.
- **Payload:** 3 lbs.
- **Powerplant:** Electric/LiPo or tethered power — ground-battery/power

- **Body Diameter:** 39 inches
- **Tether Height:** Up to 200 feet
- **Datalink:** Configurable to operating environment, location, regulations
- **GCS:** Autoflight programming, graphical flight data, payload status/data, datalink, data storage, networking and weatherproof
How is “Weather” Relevant to sUAS Operations?

• Regulatory Requirement for certain operations

• Planning
 • Can I successfully conduct the mission? Safely?
 • Can I stay within required altitude, geofencing, and other limits for entire mission?
 • Can I successfully recover aircraft at the end of the mission period?
 • What impact will weather have on my mission duration capability?

• Direct Operational Impacts
 • Managing challenging or near-limit conditions
 • Reacting to changing conditions

• Contributing Data Back Into the Weather System
 • Alert other operators of changing conditions
 • TAMDAR-type observation input to forecast models
Weather Impacts on Practical sUAS Operations

- Scale Factors of sUAS vs Part 23 Aircraft Make Them Much More Susceptible to Turbulence and Wind Shear:
 - Wing loading is much lower
 - Mass is much lower
 - Wing/Rotor Spans are Much Shorter
- Stall and cruise speeds much lower than Part 23 and Part 25 – winds have a dramatically increased impact
 - Cruise speeds top out about where Part 23 begins
- Many lower boundary wind speeds can exceed forward flight speeds – thus creating a no-return scenario
- Many sUAS have Precipitation Restrictions
Weather Impacts on Practical sUAS Operations

- Most UAS are not intended for flight into IMC
 - Icing, precip, loss of Vis/CAVU all potential issues
 - Ability to maintain VLOS is key to planning and executing many missions
- How do we characterize ground-to-air “visibility”
- Lower boundary layer atmospherics hard to measure, much less model
- Dramatic wind shifts/shear from surface to 500’ for small UAS
- Effects of weather on ground-based (versus aircraft-based) operator
Weather Impacts on Practical sUAS Operations

- Temperature susceptibility of Li-Ion battery packs
- Effects of turbulence & winds on mission duration
 - Deviation limits can significantly vary impacts on mission duration
- Increasing levels of sUAS autonomy will require reduced weather uncertainty
- Tethered UAS Systems Present Additional Considerations, Including Lightning and Static Buildup
- A briefing is required – but where do the pilots get one?
 - FSS is not yet equipped to handle UAS briefing request
 - Typical sUAS operator will have limited weather training – will need simple, intuitive tools in the field
So... What Weather Information Will Be Needed - Specifically?

- Currently available WX information, tailored for sUAS users
- New products that provide much higher spatial and temporal resolution in the boundary layer area, including:
 - Winds, Turbulence and “Gustiness Factors”
 - We need to look at “Gusts” differently than classical turbulence in low-altitude, sUAS Ops contexts
 - Indexing Gusts/Turbulence to a radically different scale of airframe/limits
 - Visibility – referenced to VLOS-type operations
 - Probability of exceeding specific limit factors:
 - Max Winds versus aircraft return speeds
 - Gusts, Turbulence, Shear – Controllability AND Battery Life
 - Temperature & Density Altitude
 - Visibility variations
 - Precipitation / Icing
 - Variations in altimeter setting during a mission
 - Lightning/Static Buildup
So... What Weather Information Will Be Needed - *Specifically*?

• Leverage the UAS platforms themselves as a key part of the solution
 • Real-time observations of boundary layer conditions
 • Nowcasting
 • Research & modeling
 • Calibrate model metrics for individual aircraft types
 • Interaction between turbulence, deviation limits/range, and vehicle performance
 • Terrain and vegetation database updates
400,000 + UAVs will need easy weather access…

A Good Starting Point: We are teaming with others to develop an ADDS-like site for UAVs
Three levels of UAS weather services...

1. Basic Drone-WX™ mobile

2. Enhanced (fee for service model) Drone-WX™ mobile

3. EPIREP-like Downlinked weather

- Graphical, intuitive displays
- Red/Yellow/Green suitability categories based on user-entered limits
- Provision of observation data back into the system reduces user service fees
UAVs as a Weather-Collection Platform – “Micro” AMDAR/TAMDAR/MDCRS

Sensurion MP-1 or MP-4
Data and Sensor systems

- Sensurion sensor packages can be included for most data collection missions on MP-1, MP-4, or other type
- With its variable energy payloads, Magpie can be configured for short or longer endurance mission profiles

Sensor Options
- Airborne, fixed-point, & mobile sensors
- Optical
 - High-Definition optical imaging
 - Infrared (IR) / Enhanced IR
- Chemical / Radiological / Toxicity
- Atmospheric
 - Temperature / Pressure / Humidity
 - Wind direction / speed
 - Turbulence / Ride Quality

Data Management
- Cloud-based data management
- Atmospheric plotting
- Winds aloft profiling
- Plume modeling
- Carbon output monitoring
- Traffic monitoring
- Emergency communication provision
Using UAVs for HazMat Plume modelling

- Atmospheric modeling provides detail of hazard motion
- Hazard plume track and concentration data helps with emergency planning and during the event
- Expanded sensor network benefits all (private & government) hazard alerting & response
- UAVs can also find release point
Thank you!

6300 34th Ave South
Minneapolis, MN 55450
1-877-222-1599

www.sensurion.com